4,167 research outputs found

    Energy and Throughput Optimization of Wireless Mesh Network with Continuous Power Control

    Get PDF
    Providing high data rate with minimum energy consumption is a crucial challenge for next generation wireless networks. This paper focuses on wireless mesh networks using a MAC layer based on S-TDMA (Spatial Time Division Multiple Access). We investigate on the optimization issues combining throughput and energy consumption. Our contributions are two-fold. First, we formulate and solve using column generation a new MILP to compute the energy-throughput tradeoff curve under a physical interference model when the nodes can perform continuous power control and can use a discrete set of data rates. Second, we highlight some network engineering insights. In particular, we show that power control and multi-rate functionalities allow to reach optimal throughput with lower energy consumption using a mix of single hop and multi-hop routes

    Energy and Throughput Optimization of Wireless Mesh Networks with Continuous Power Control

    Get PDF
    International audience—Providing high data rates with minimum energy consumption is a crucial challenge for next generation wireless networks. There are few papers in the literature which combine these two issues. This paper focuses on multi-hop wireless mesh networks using a MAC layer based on S-TDMA (Spatial Time Di-vision Multiple Access). We develop an optimization framework based on linear programming to study the relationship between throughput and energy consumption. Our contributions are two-fold. First, we formulate and solve, using column generation, a new MILP to compute offline energy-throughput tradeoff curve. We use a physical interference model where the nodes can perform continuous power control and can use a discrete set of data rates. Second, we highlight network engineering insights. We show, via numerical results, that power control and multi-rate functionalities allow optimal throughput to be reached, with lower energy consumption, using a mix of single hop and multi-hop routes

    Optimal Scheduling and Power Allocation for Two-Hop Energy Harvesting Communication Systems

    Full text link
    Energy harvesting (EH) has recently emerged as a promising technique for green communications. To realize its potential, communication protocols need to be redesigned to combat the randomness of the harvested energy. In this paper, we investigate how to apply relaying to improve the short-term performance of EH communication systems. With an EH source and a non-EH half-duplex relay, we consider two different design objectives: 1) short-term throughput maximization; and 2) transmission completion time minimization. Both problems are joint scheduling and power allocation problems, rendered quite challenging by the half-duplex constraint at the relay. A key finding is that directional water-filling (DWF), which is the optimal power allocation algorithm for the single-hop EH system, can serve as guideline for the design of two-hop communication systems, as it not only determines the value of the optimal performance, but also forms the basis to derive optimal solutions for both design problems. Based on a relaxed energy profile along with the DWF algorithm, we derive key properties of the optimal solutions for both problems and thereafter propose efficient algorithms. Simulation results will show that both scheduling and power allocation optimizations are necessary in two-hop EH communication systems.Comment: Submitted to IEEE Transaction on Wireless Communicatio

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Continuum Equilibria and Global Optimization for Routing in Dense Static Ad Hoc Networks

    Full text link
    We consider massively dense ad hoc networks and study their continuum limits as the node density increases and as the graph providing the available routes becomes a continuous area with location and congestion dependent costs. We study both the global optimal solution as well as the non-cooperative routing problem among a large population of users where each user seeks a path from its origin to its destination so as to minimize its individual cost. Finally, we seek for a (continuum version of the) Wardrop equilibrium. We first show how to derive meaningful cost models as a function of the scaling properties of the capacity of the network and of the density of nodes. We present various solution methodologies for the problem: (1) the viscosity solution of the Hamilton-Jacobi-Bellman equation, for the global optimization problem, (2) a method based on Green's Theorem for the least cost problem of an individual, and (3) a solution of the Wardrop equilibrium problem using a transformation into an equivalent global optimization problem
    • …
    corecore