47,717 research outputs found

    Power Allocation and Scheduling for SWIPT Systems with Non-linear Energy Harvesting Model

    Full text link
    In this paper, we design a resource allocation algorithm for multiuser simultaneous wireless information and power transfer systems for a realistic non-linear energy harvesting (EH) model. In particular, the algorithm design is formulated as a non-convex optimization problem for the maximization of the long-term average total harvested power at EH receivers subject to quality of service requirements for information decoding receivers. To obtain a tractable solution, we transform the corresponding non-convex sum-of-ratios objective function into an equivalent objective function in parametric subtractive form. This leads to a computationally efficient iterative resource allocation algorithm. Numerical results reveal a significant performance gain that can be achieved if the resource allocation algorithm design is based on the non-linear EH model instead of the traditional linear model.Comment: Accepted for presentation at the IEEE ICC 201

    On Asymptotic Optimality of Dual Scheduling Algorithm In A Generalized Switch

    Get PDF
    Generalized switch is a model of a queueing system where parallel servers are interdependent and have time-varying service capabilities. This paper considers the dual scheduling algorithm that uses rate control and queue-length based scheduling to allocate resources for a generalized switch. We consider a saturated system in which each user has infinite amount of data to be served. We prove the asymptotic optimality of the dual scheduling algorithm for such a system, which says that the vector of average service rates of the scheduling algorithm maximizes some aggregate concave utility functions. As the fairness objectives can be achieved by appropriately choosing utility functions, the asymptotic optimality establishes the fairness properties of the dual scheduling algorithm. The dual scheduling algorithm motivates a new architecture for scheduling, in which an additional queue is introduced to interface the user data queue and the time-varying server and to modulate the scheduling process, so as to achieve different performance objectives. Further research would include scheduling with Quality of Service guarantees with the dual scheduler, and its application and implementation in various versions of the generalized switch model
    corecore