67 research outputs found

    Detection and Prevention System towards the Truth of Convergence on Decision Using Aumann Agreement Theorem

    Get PDF
    AbstractThe Detection and Prevention system against many attacks has been formulated in Mobile ad hoc networks to secure the data and to provide the uninterrupted service to the legitimate clients. The formulation of opinion of neighbors or belief value or Trust value plays vital role in the detection system to avoid attacks. The attack detection system always extracts the behaviors of nodes to identify the attack patterns and prediction of future attacks. The False positives and false negatives plays vital role on identification of attackers accurately without any false positives and negatives .Our system uses the Aumann agreement theorem for convergence of Truth on opinion based on the bound of confidence value, such that truth consensus will maintained, The accuracy of system will be enhanced through this methodolog

    Group Key Management in Wireless Ad-Hoc and Sensor Networks

    Get PDF
    A growing number of secure group applications in both civilian and military domains is being deployed in WAHNs. A Wireless Ad-hoc Network (WARN) is a collection of autonomous nodes or terminals that communicate with each other by forming a multi-hop radio network and maintaining connectivity in a decentralized manner. A Mobile Ad-hoc Network (MANET) is a special type of WARN with mobile users. MANET nodes have limited communication, computational capabilities, and power. Wireless Sensor Networks (WSNs) are sensor networks with massive numbers of small, inexpensive devices pervasive throughout electrical and mechanical systems and ubiquitous throughout the environment that monitor and control most aspects of our physical world. In a WAHNs and WSNs with un-trusted nodes, nodes may falsify information, collude to disclose system keys, or even passively refuse to collaborate. Moreover, mobile adversaries might invade more than one node and try to reveal all system secret keys. Due to these special characteristics, key management is essential in securing such networks. Current protocols for secure group communications used in fixed networks tend to be inappropriate. The main objective of this research is to propose, design and evaluate a suitable key management approach for secure group communications to support WAHNs and WSNs applications. Key management is usually divided into key analysis, key assignment, key generation and key distribution. In this thesis, we tried to introduce key management schemes to provide secure group communications in both WAHNs and WSNs. Starting with WAHNs, we developed a key management scheme. A novel architecture for secure group communications was proposed. Our proposed scheme handles key distribution through Combinatorial Key Distribution Scheme (CKDS). We followed with key generation using Threshold-based Key Generation in WAHNs (TKGS). For key assignment, we proposed Combinatorial Key Assignment Scheme (CKAS), which assigns closer key strings to co-located nodes. We claim that our architecture can readily be populated with components to support objectives such as fault tolerance, full-distribution and scalability to mitigate WAHNs constraints. In our architecture, group management is integrated with multicast at the application layer. For key management in WSNs, we started with DCK, a modified scheme suitable for WSNs. In summary, the DCK achieves the following: (1) cluster leader nodes carry the major part of the key management overhead; (2) DCK consumes less than 50% of the energy consumed by SHELL in key management; (3) localizing key refreshment and handling node capture enhances the security by minimizing the amount of information known by each node about other portions of the network; and (4) since DCK does not involve the use of other clusters to maintain local cluster data, it scales better from a storage point of view with the network size represented by the number of clusters. We went further and proposed the use of key polynomials with DCK to enhance the resilience of multiple node capturing. Comparing our schemes to static and dynamic key management, our scheme was found to enhance network resilience at a smaller polynomial degree t and accordingly with less storage per node

    Group Key Managements in Wireless Sensor Networks

    Get PDF

    MULTI-USER SECURITY FOR MULTICAST COMMUNICATIONS

    Get PDF
    The ubiquity of communication networks is facilitating the development of wireless and Internet applications aimed at allowing users to communicate and collaborate amongst themselves. In the future, group-oriented services will be one of the dominant services that facilitate real-time information exchange among a large number of diverse users. However, before these group-oriented services can be successful deployed, technologies must be developed to guarantee the security of the information and data exchanged in group communications. Among all security requirements of group communication, access control is paramount as it is the first line of defense that prevents unauthorized access to the group communication and protects the value of application data. Access control is usually achieved by encrypting the data using a key that is shared among all legitimated group members. The problem of access control becomes more difficult when the content is distributed to a dynamic group with user joining and leaving the service for a variety of reasons. Thus, Group Key Management is required to achieve key update with dynamic group membership. Existing group key management schemes seek to minimize either the amount of rounds needed in establishing the group key, or the size of the key updating messages. They do not, however, considering the varying requirements of the users, the underlying networks or the applications. Those generic solutions of access control often yield large consumption of communication, computation and storage resources. In addition, the design of existing key management schemes focus on protecting the application data, but introduces vulnerabilities in protecting the statistics of group membership information. This poses severe security concern in various group applications. The focus of this dissertation is to design network-specific and application specific group key management and solve the security vulnerability of key management that reveals dynamic group membership information. This dissertation will present scalable group key management in heterogeneous wireless network, the hierarchical access control for multimedia applications, and a framework of securing dynamic group membership information over multicast. The main contribution of this dissertation is to advance the group key management research to achieve higher level of scalability and security

    Low-cost group rekeying for unattended wireless sensor networks

    No full text
    Wireless sensor networks (WSNs) are made up of large groups of nodes that perform distributed monitoring services. Since sensor measurements are often sensitive data acquired in hostile environments, securing WSN becomes mandatory. However, WSNs consists of low-end devices and frequently preclude the presence of a centralized security manager. Therefore, achieving security is even more challenging. State-of-the-art proposals rely on: (1) attended and centralized security systems; or (2) establishing initial keys without taking into account how to efficiently manage rekeying. In this paper we present a scalable group key management proposal for unattended WSNs that is designed to reduce the rekeying cost when the group membership changes.Peer ReviewedPostprint (published version
    • …
    corecore