4,868 research outputs found

    Multiobjective scheduling for semiconductor manufacturing plants

    Get PDF
    Scheduling of semiconductor wafer manufacturing system is identified as a complex problem, involving multiple and conflicting objectives (minimization of facility average utilization, minimization of waiting time and storage, for instance) to simultaneously satisfy. In this study, we propose an efficient approach based on an artificial neural network technique embedded into a multiobjective genetic algorithm for multi-decision scheduling problems in a semiconductor wafer fabrication environment

    HYBRID GENETIC AND PENGUIN SEARCH OPTIMIZATION ALGORITHM (GA-PSEOA) FOR EFFICIENT FLOW SHOP SCHEDULING SOLUTIONS

    Get PDF
    This paper presents a novel hybrid approach, fusing genetic algorithms (GA) and penguin search optimization (PSeOA), to address the flow shop scheduling problem (FSSP). GA utilizes selection, crossover, and mutation inspired by natural selection, while PSeOA emulates penguin foraging behavior for efficient exploration. The approach integrates GA's genetic diversity and solution space exploration with PSeOA's rapid convergence, further improved with FSSP-specific modifications. Extensive experiments validate its efficacy, outperforming pure GA, PSeOA, and other metaheuristics

    Weapon Release Scheduling from Multiple-Bay Aircraft using Multi-Objective Evolutionary Algorithms

    Get PDF
    The United States Air Force has put an increased emphasis on the timely delivery of precision weapons. Part of this effort has been to us multiple bay aircraft such the B-1B Lancer and B-52 Stratofortress to provide Close Air Support and responsive strikes using 1760 weapons. In order to provide greater flexibility, the aircraft carry heterogeneous payloads which can require deconfliction in order to drop multiple different types of weapons. Current methods of deconfliction and weapon selection are highly crew dependent and work intensive. This research effort investigates the optimization of an algorithm for weapon release which allows the aircraft to perform deconfliction automatically. This reduces crew load and response time in order to deal with time-sensitive targets. The overall problem maps to the Job-Shop Scheduling problem. Optimization of the algorithm is done through the General Multiobjective Parallel Genetic Algorithm (GENMOP). We examine the results from pedagogical experiments and real-world test scenarios in the light of improving decision making. The results are encouraging in that the program proves capable of finding acceptable release schedules, however the solution space is such that applying the program to real world situations is unnecessary. We present visualizations of the schedules which demonstrate these conclusions

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    A particle swarm optimization based memetic algorithm for dynamic optimization problems

    Get PDF
    Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60
    corecore