13 research outputs found

    Model predictive control for cooperative control of space robots

    Get PDF
    The problem of Orbital Manipulation of Passive body is discussed here. Two scenarios including passive object rigidly attached to robotic servicers and passive body attached to servicers through manipulators are discussed. The Model Predictive Control (MPC) technique is briefly presented and successfully tested through simulations on two cases of position control of passive body in the orbit

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    On-orbit serviceability of space system architectures

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2006.Includes bibliographical references (p. 171-182).On-orbit servicing is the process of improving a space-based capability through a combination of in-orbit activities which may include inspection; rendezvous and docking; and value-added modifications to a satellite's position, orientation, and operational status. As a means to extend the useful life or operational flexibility of spacecraft, on-orbit servicing constitutes one pathway to a responsive space enterprise. Following launch, traditional satellite operations are tightly constrained by an inability to access the orbiting vehicle. With the exception of software upgrades from ground controllers, operators are wedded to supporting payload technologies that become rapidly obsolete and to bus structures that deform during the stress of launch and degrade in the harsh environment of space. On-orbit servicing offers satellite operators an option for maintaining or improving space-based capabilities without launching a new spacecraft. Numerous studies have been performed on on-orbit servicing, particularly regarding the architecture of the servicing provider. Several customer valuation case studies have also been performed to identify the economic case (or lack thereof) for different categories of servicing missions.(cont.) Little work, however, has been done to analyze the tradespace of potential on-orbit servicing customers-a global analysis of operational satellites currently orbiting the Earth. The goal of this research is to develop and test a methodology to assess the physical amenability of satellites currently in operation to on-orbit servicing. As defined here, physical amenability of a target satellite, or "serviceability," refers to the relative complexity required of a teleoperated or autonomously controlled robotic vehicle to accomplish on-orbit servicing. A three-step process is followed to perform serviceability assessments. First, a taxonomy of space systems is constructed to add structure to the problem and to identify satellite attributes that drive servicing mission complexity. Second, a methodology is proposed to assess serviceability across the four servicing activities of rendezvous, acquire, access, and service.(cont.) This includes development of an agent-based model based on orbital transfers as well as a generalized framework in which serviceability is decomposed into four elements: (1) knowledge, (2) scale, (3) precision, and (4) timing. Third, the value of architecture frameworks and systems engineering modeling languages for conducting serviceability assessments is explored through the development of a discrete event simulation of the Hubble Space Telescope. The thesis concludes with prescriptive technical considerations for designing serviceable satellites and a discussion of the political, legal, and financial challenges facing servicing providers.by Matthew G. Richards.S.M

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The proceedings of the SOAR workshop are presented. The technical areas included are as follows: Automation and Robotics; Environmental Interactions; Human Factors; Intelligent Systems; and Life Sciences. NASA and Air Force programmatic overviews and panel sessions were also held in each technical area
    corecore