540 research outputs found

    Mean Field Equilibrium in Dynamic Games with Complementarities

    Full text link
    We study a class of stochastic dynamic games that exhibit strategic complementarities between players; formally, in the games we consider, the payoff of a player has increasing differences between her own state and the empirical distribution of the states of other players. Such games can be used to model a diverse set of applications, including network security models, recommender systems, and dynamic search in markets. Stochastic games are generally difficult to analyze, and these difficulties are only exacerbated when the number of players is large (as might be the case in the preceding examples). We consider an approximation methodology called mean field equilibrium to study these games. In such an equilibrium, each player reacts to only the long run average state of other players. We find necessary conditions for the existence of a mean field equilibrium in such games. Furthermore, as a simple consequence of this existence theorem, we obtain several natural monotonicity properties. We show that there exist a "largest" and a "smallest" equilibrium among all those where the equilibrium strategy used by a player is nondecreasing, and we also show that players converge to each of these equilibria via natural myopic learning dynamics; as we argue, these dynamics are more reasonable than the standard best response dynamics. We also provide sensitivity results, where we quantify how the equilibria of such games move in response to changes in parameters of the game (e.g., the introduction of incentives to players).Comment: 56 pages, 5 figure

    Equilibria of dynamic games with many players: Existence, approximation, and market structure

    Get PDF
    In this paper we study stochastic dynamic games with many players; these are a fundamental model for a wide range of economic applications. The standard solution concept for such games is Markov perfect equilibrium (MPE), but it is well known that MPE computation becomes intractable as the number of players increases. We instead consider the notion of stationary equilibrium (SE), where players optimize assuming the empirical distribution of others' states remains constant at its long run average. We make two main contributions. First, we provide a rigorous justification for using SE. In particular, we provide a parsimonious collection of exogenous conditions over model primitives that guarantee existence of SE, and ensure that an appropriate approximation property to MPE holds, in a general model with possibly unbounded state spaces. Second, we draw a significant connection between the validity of SE, and market structure: under the same conditions that imply SE exist and approximates MPE well, the market becomes fragmented in the limit of many firms. To illustrate this connection, we study in detail a series of dynamic oligopoly examples. These examples show that our conditions enforce a form of “decreasing returns to larger states;” this yields fragmented industries in the SE limit. By contrast, violation of these conditions suggests “increasing returns to larger states” and potential market concentration. In that sense, our work uses a fully dynamic framework to also contribute to a longstanding issue in industrial organization: understanding the determinants of market structure in different industries

    Load Balancing via Random Local Search in Closed and Open systems

    Full text link
    In this paper, we analyze the performance of random load resampling and migration strategies in parallel server systems. Clients initially attach to an arbitrary server, but may switch server independently at random instants of time in an attempt to improve their service rate. This approach to load balancing contrasts with traditional approaches where clients make smart server selections upon arrival (e.g., Join-the-Shortest-Queue policy and variants thereof). Load resampling is particularly relevant in scenarios where clients cannot predict the load of a server before being actually attached to it. An important example is in wireless spectrum sharing where clients try to share a set of frequency bands in a distributed manner.Comment: Accepted to Sigmetrics 201

    Markov Perfect Industry Dynamics with Many Firms

    Get PDF
    We propose an approximation method for analyzing Ericson and Pakes (1995)-style dynamic models of imperfect competition. We develop a simple algorithm for computing an ``oblivious equilibrium,'' in which each firm is assumed to make decisions based only on its own state and knowledge of the long run average industry state, but where firms ignore current information about competitors' states. We prove that, as the market becomes large, if the equilibrium distribution of firm states obeys a certain ``light-tail'' condition, then oblivious equilibria closely approximate Markov perfect equilibria. We develop bounds that can be computed to assess the accuracy of the approximation for any given applied problem. Through computational experiments, we find that the method often generates useful approximations for industries with hundreds of firms and in some cases even tens of firms.

    Smoothness for Simultaneous Composition of Mechanisms with Admission

    Full text link
    We study social welfare of learning outcomes in mechanisms with admission. In our repeated game there are nn bidders and mm mechanisms, and in each round each mechanism is available for each bidder only with a certain probability. Our scenario is an elementary case of simple mechanism design with incomplete information, where availabilities are bidder types. It captures natural applications in online markets with limited supply and can be used to model access of unreliable channels in wireless networks. If mechanisms satisfy a smoothness guarantee, existing results show that learning outcomes recover a significant fraction of the optimal social welfare. These approaches, however, have serious drawbacks in terms of plausibility and computational complexity. Also, the guarantees apply only when availabilities are stochastically independent among bidders. In contrast, we propose an alternative approach where each bidder uses a single no-regret learning algorithm and applies it in all rounds. This results in what we call availability-oblivious coarse correlated equilibria. It exponentially decreases the learning burden, simplifies implementation (e.g., as a method for channel access in wireless devices), and thereby addresses some of the concerns about Bayes-Nash equilibria and learning outcomes in Bayesian settings. Our main results are general composition theorems for smooth mechanisms when valuation functions of bidders are lattice-submodular. They rely on an interesting connection to the notion of correlation gap of submodular functions over product lattices.Comment: Full version of WINE 2016 pape
    • …
    corecore