107,477 research outputs found

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes

    Get PDF
    A variety of gravitational dynamics problems in asymptotically anti-de Sitter (AdS) spacetime are amenable to efficient numerical solution using a common approach involving a null slicing of spacetime based on infalling geodesics, convenient exploitation of the residual diffeomorphism freedom, and use of spectral methods for discretizing and solving the resulting differential equations. Relevant issues and choices leading to this approach are discussed in detail. Three examples, motivated by applications to non-equilibrium dynamics in strongly coupled gauge theories, are discussed as instructive test cases. These are gravitational descriptions of homogeneous isotropization, collisions of planar shocks, and turbulent fluid flows in two spatial dimensions.Comment: 70 pages, 19 figures; v4: fixed minus sign typo in last term of eqn. (3.47

    A Discontinuous Galerkin Method for Ideal Two-Fluid Plasma Equations

    Full text link
    A discontinuous Galerkin method for the ideal 5 moment two-fluid plasma system is presented. The method uses a second or third order discontinuous Galerkin spatial discretization and a third order TVD Runge-Kutta time stepping scheme. The method is benchmarked against an analytic solution of a dispersive electron acoustic square pulse as well as the two-fluid electromagnetic shock and existing numerical solutions to the GEM challenge magnetic reconnection problem. The algorithm can be generalized to arbitrary geometries and three dimensions. An approach to maintaining small gauge errors based on error propagation is suggested.Comment: 40 pages, 18 figures

    Matter flows around black holes and gravitational radiation

    Full text link
    We develop and calibrate a new method for estimating the gravitational radiation emitted by complex motions of matter sources in the vicinity of black holes. We compute numerically the linearized curvature perturbations induced by matter fields evolving in fixed black hole backgrounds, whose evolution we obtain using the equations of relativistic hydrodynamics. The current implementation of the proposal concerns non-rotating holes and axisymmetric hydrodynamical motions. As first applications we study i) dust shells falling onto the black hole isotropically from finite distance, ii) initially spherical layers of material falling onto a moving black hole, and iii) anisotropic collapse of shells. We focus on the dependence of the total gravitational wave energy emission on the flow parameters, in particular shell thickness, velocity and degree of anisotropy. The gradual excitation of the black hole quasi-normal mode frequency by sufficiently compact shells is demonstrated and discussed. A new prescription for generating physically reasonable initial data is discussed, along with a range of technical issues relevant to numerical relativity.Comment: 27 pages, 12 encapsulated figures, revtex, amsfonts, submitted to Phys. Rev.

    Multidomain Spectral Method for the Helically Reduced Wave Equation

    Get PDF
    We consider the 2+1 and 3+1 scalar wave equations reduced via a helical Killing field, respectively referred to as the 2-dimensional and 3-dimensional helically reduced wave equation (HRWE). The HRWE serves as the fundamental model for the mixed-type PDE arising in the periodic standing wave (PSW) approximation to binary inspiral. We present a method for solving the equation based on domain decomposition and spectral approximation. Beyond describing such a numerical method for solving strictly linear HRWE, we also present results for a nonlinear scalar model of binary inspiral. The PSW approximation has already been theoretically and numerically studied in the context of the post-Minkowskian gravitational field, with numerical simulations carried out via the "eigenspectral method." Despite its name, the eigenspectral technique does feature a finite-difference component, and is lower-order accurate. We intend to apply the numerical method described here to the theoretically well-developed post-Minkowski PSW formalism with the twin goals of spectral accuracy and the coordinate flexibility afforded by global spectral interpolation.Comment: 57 pages, 11 figures, uses elsart.cls. Final version includes revisions based on referee reports and has two extra figure

    A hybridizable discontinuous Galerkin method for electromagnetics with a view on subsurface applications

    Full text link
    Two Hybridizable Discontinuous Galerkin (HDG) schemes for the solution of Maxwell's equations in the time domain are presented. The first method is based on an electromagnetic diffusion equation, while the second is based on Faraday's and Maxwell--Amp\`ere's laws. Both formulations include the diffusive term depending on the conductivity of the medium. The three-dimensional formulation of the electromagnetic diffusion equation in the framework of HDG methods, the introduction of the conduction current term and the choice of the electric field as hybrid variable in a mixed formulation are the key points of the current study. Numerical results are provided for validation purposes and convergence studies of spatial and temporal discretizations are carried out. The test cases include both simulation in dielectric and conductive media
    • 

    corecore