3 research outputs found

    A numerical solution for nonlinear heat transfer of fin problems using the Haar wavelet quasilinearization method

    Get PDF
    The aim of this paper is to study the new application of Haar wavelet quasilinearization method (HWQM) to solve one-dimensional nonlinear heat transfer of fin problems. Three different types of nonlinear problems are numerically treated and the HWQM solutions are compared with those of the other method. The effects of temperature distribution of a straight fin with temperature-dependent thermal conductivity in the presence of various parameters related to nonlinear boundary value problems are analyzed and discussed. Numerical results of HWQM gives excellent numerical results in terms of competitiveness and accuracy compared to other numerical methods. This method was proven to be stable, convergent and, easily coded

    Numerical Solution of Fuzzy Fractional Differential Equation By Haar Wavelet

    Get PDF
    In this paper, we deal with a wavelet operational method based on Haar wavelet to solve the fuzzy fractional differential equation in the Caputo derivative sense. To this end, we derive the Haar wavelet operational matrix of the fractional order integration. The given approach provides an efficient method to find the solution and its upper bond error. To complete the discussion, the convergence theorem is subsequently expressed in detail. So far, no paper has used the Harr wavelet method using generalized difference and fuzzy derivatives, and this is the first time we have done so. Finally, the presented examples reflect the accuracy and efficiency of the proposed method

    ABOUT WAVELET-BASED MULTIGRID NUMERICAL METHOD OF STRUCTURAL ANALYSIS WITH THE USE OF DISCRETE HAAR BASIS

    Get PDF
    he distinctive paper is devoted to so-called multigrid (particularly two-grid) method of structural analysis based on discrete Haar basis (one-dimensional, two-dimensional and three-dimensional problems are under consideration). Approximations of the mesh functions in discrete Haar bases of zero and first levels are described (the mesh function is represented as the sum in which one term is its approximation of the first level, and the second term is so-called complement (up to the initial state) on the grid of the first level). Special projectors are constructed for the spaces of vector functions of the original grid to the space of their approximation on the first-level grid and its complement (the refinement component) to the initial state. Basic scheme of the two-grid method is presented. This method allows solution of boundary problems of structural mechanics with the use of matrix operators of significantly smaller dimension. It should be noted that discrete analogue of the initial operator equation is a system of linear algebraic equations which is constructed with the use of finite element method or finite difference method. Block Gauss method can be used for direct solution
    corecore