2,095 research outputs found

    Discrete curvature approximations and segmentation of polyhedral surfaces

    Get PDF
    The segmentation of digitized data to divide a free form surface into patches is one of the key steps required to perform a reverse engineering process of an object. To this end, discrete curvature approximations are introduced as the basis of a segmentation process that lead to a decomposition of digitized data into areas that will help the construction of parametric surface patches. The approach proposed relies on the use of a polyhedral representation of the object built from the digitized data input. Then, it is shown how noise reduction, edge swapping techniques and adapted remeshing schemes can participate to different preparation phases to provide a geometry that highlights useful characteristics for the segmentation process. The segmentation process is performed with various approximations of discrete curvatures evaluated on the polyhedron produced during the preparation phases. The segmentation process proposed involves two phases: the identification of characteristic polygonal lines and the identification of polyhedral areas useful for a patch construction process. Discrete curvature criteria are adapted to each phase and the concept of invariant evaluation of curvatures is introduced to generate criteria that are constant over equivalent meshes. A description of the segmentation procedure is provided together with examples of results for free form object surfaces

    Part Description and Segmentation Using Contour, Surface and Volumetric Primitives

    Get PDF
    The problem of part definition, description, and decomposition is central to the shape recognition systems. The Ultimate goal of segmenting range images into meaningful parts and objects has proved to be very difficult to realize, mainly due to the isolation of the segmentation problem from the issue of representation. We propose a paradigm for part description and segmentation by integration of contour, surface, and volumetric primitives. Unlike previous approaches, we have used geometric properties derived from both boundary-based (surface contours and occluding contours), and primitive-based (quadric patches and superquadric models) representations to define and recover part-whole relationships, without a priori knowledge about the objects or object domain. The object shape is described at three levels of complexity, each contributing to the overall shape. Our approach can be summarized as answering the following question : Given that we have all three different modules for extracting volume, surface and boundary properties, how should they be invoked, evaluated and integrated? Volume and boundary fitting, and surface description are performed in parallel to incorporate the best of the coarse to fine and fine to coarse segmentation strategy. The process involves feedback between the segmentor (the Control Module) and individual shape description modules. The control module evaluates the intermediate descriptions and formulates hypotheses about parts. Hypotheses are further tested by the segmentor and the descriptors. The descriptions thus obtained are independent of position, orientation, scale, domain and domain properties, and are based purely on geometric considerations. They are extremely useful for the high level domain dependent symbolic reasoning processes, which need not deal with tremendous amount of data, but only with a rich description of data in terms of primitives recovered at various levels of complexity

    A surface based approach for constant scallop height tool path generation

    Get PDF
    International audienceThe machining of sculptured surfaces like molds and dies in 3-axis milling relies on the chordal deviation, the scallop height parameter and the planning strategy. The choice of these parameters must ensure that manufacturing surfaces respect the geometrical specifications. The current strategies of machining primarily consist in driving the tool according to parallel planes which generates a tightening of the tool paths and over quality. The constant scallop height planning strategy has been developed to avoid this tightening. In this paper, we present a new method of constant scallop height tool path generation based on the concept of the machining surface. The concept of the machining surface is exposed and its use to generate constant scallop height tool paths. The approach is confronted with existing methods in terms of precision and in particular its aptitude to treat curvature discontinuities

    Surface Modeling and Analysis Using Range Images: Smoothing, Registration, Integration, and Segmentation

    Get PDF
    This dissertation presents a framework for 3D reconstruction and scene analysis, using a set of range images. The motivation for developing this framework came from the needs to reconstruct the surfaces of small mechanical parts in reverse engineering tasks, build a virtual environment of indoor and outdoor scenes, and understand 3D images. The input of the framework is a set of range images of an object or a scene captured by range scanners. The output is a triangulated surface that can be segmented into meaningful parts. A textured surface can be reconstructed if color images are provided. The framework consists of surface smoothing, registration, integration, and segmentation. Surface smoothing eliminates the noise present in raw measurements from range scanners. This research proposes area-decreasing flow that is theoretically identical to the mean curvature flow. Using area-decreasing flow, there is no need to estimate the curvature value and an optimal step size of the flow can be obtained. Crease edges and sharp corners are preserved by an adaptive scheme. Surface registration aligns measurements from different viewpoints in a common coordinate system. This research proposes a new surface representation scheme named point fingerprint. Surfaces are registered by finding corresponding point pairs in an overlapping region based on fingerprint comparison. Surface integration merges registered surface patches into a whole surface. This research employs an implicit surface-based integration technique. The proposed algorithm can generate watertight models by space carving or filling the holes based on volumetric interpolation. Textures from different views are integrated inside a volumetric grid. Surface segmentation is useful to decompose CAD models in reverse engineering tasks and help object recognition in a 3D scene. This research proposes a watershed-based surface mesh segmentation approach. The new algorithm accurately segments the plateaus by geodesic erosion using fast marching method. The performance of the framework is presented using both synthetic and real world data from different range scanners. The dissertation concludes by summarizing the development of the framework and then suggests future research topics

    Triangular Bézier Surfaces with Approximate Continuity

    Get PDF
    When interpolating a data mesh using triangular Bézier patches, the requirement of C¹ or G¹ continuity imposes strict constraints on the control points of adjacent patches. However, fulfillment of these continuity constraints cannot guarantee that the resulting surfaces have good shape. This thesis presents an approach to constructing surfaces with approximate C¹/G¹ continuity, where a small amount of discontinuity is allowed between surface normals of adjacent patches. For all the schemes presented in this thesis, although the resulting surface has C¹/G¹ continuity at the data vertices, I only require approximate C¹/G¹ continuity along data triangle boundaries so as to lower the patch degree. For functional data, a cubic interpolating scheme with approximate C¹ continuity is presented. In this scheme, one cubic patch will be constructed for each data triangle and upper bounds are provided for the normal discontinuity across patch boundaries. For a triangular mesh of arbitrary topology, two interpolating parametric schemes are devised. For each data triangle, the first scheme performs a domain split and constructs three cubic micro-patches; the second scheme constructs one quintic patch for each data triangle. To reduce the normal discontinuity, neighboring patches across data triangle boundaries are adjusted to have identical normals at the middle point of the common boundary. The upper bounds for the normal discontinuity between two parametric patches are also derived for the resulting approximate G¹ surface. In most cases, the resulting surfaces with approximate continuity have the same level of visual smoothness and in some cases better shape quality

    Point-based mathematics for computer-aided manufacture

    Get PDF
    This thesis demonstrates the feasibility of machining high quality sculptured surfaces directly from a point-based definition. The work is founded on the strategy of using a sparse set of points to characterise shape although it is assumed that an appropriately dense definition can be generated by the use of some unspecified high quality interpolation algorithm. This is in contrast to the conventional CAD/CAM approach where explicit parametric expressions are used to describe the part. The research is founded on the Inverse Offset Method (IOM) proposed by Kishinami; the algorithm is chosen because it possesses a number of desirable properties, most notably its versatility and robustness. The first fundamental contribution is an error analysis of the IOM that has not been published before, the analysis is dependent on the surface and cutter path point spacing, the tool radius and the local surface curvature. The accuracy of the error analysis is corroborated by the machining and measuring of a physical part. Furthermore it is established that the quality of the finished part produced by the IOM compares favourably with that produced by a commercial package for similar tolerances. The principal research achievement is the optimisation of the IOM to exploit the coherence of data ordered into sections. This results in the IOM generating cutter paths in a time period comparable to that of the commercial package without a reduction in the quality of the finished part. The last contribution made in this thesis is a report on the issues concerning the machining of point definitions derived from multi-surfaces. The work presented in this thesis offers an alternative strategy to the design and manufacture of free-form surfaces. The main benefits of adopting this strategy are gained because it removes the need to generate a parametric surface definition
    • …
    corecore