5 research outputs found

    Classical and quantum Merlin-Arthur automata

    Full text link
    We introduce Merlin-Arthur (MA) automata as Merlin provides a single certificate and it is scanned by Arthur before reading the input. We define Merlin-Arthur deterministic, probabilistic, and quantum finite state automata (resp., MA-DFAs, MA-PFAs, MA-QFAs) and postselecting MA-PFAs and MA-QFAs (resp., MA-PostPFA and MA-PostQFA). We obtain several results using different certificate lengths. We show that MA-DFAs use constant length certificates, and they are equivalent to multi-entry DFAs. Thus, they recognize all and only regular languages but can be exponential and polynomial state efficient over binary and unary languages, respectively. With sublinear length certificates, MA-PFAs can recognize several nonstochastic unary languages with cutpoint 1/2. With linear length certificates, MA-PostPFAs recognize the same nonstochastic unary languages with bounded error. With arbitrarily long certificates, bounded-error MA-PostPFAs verify every unary decidable language. With sublinear length certificates, bounded-error MA-PostQFAs verify several nonstochastic unary languages. With linear length certificates, they can verify every unary language and some NP-complete binary languages. With exponential length certificates, they can verify every binary language.Comment: 14 page

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore