58,142 research outputs found

    Upper Bound Analysis and Routing in Optical Benes Networks

    Get PDF
    Multistage Interconnection Networks (MIN) are popular in switching and communication applications. It has been used in telecommunication and parallel computing systems for many years. The new challenge facing optical MIN is crosstalk, which is caused by coupling two signals within a switching element. Crosstalk is not too big an issue in the Electrical Domain, but due to the stringent Bit Error Rate (BER) constraint, it is a big major concern in the Optical Domain. In this research dissertation, we will study the blocking probability in the optical network and we will study the deterministic conditions for strictly non-blocking Vertical Stacked Optical Benes Networks (VSOBN) with and without worst-case scenarios. We will establish the upper bound on blocking probability of Vertical Stacked Optical Benes Networks with respect to the number of planes used when the non-blocking requirement is not met. We will then study routing in WDM Benes networks and propose a new routing algorithm so that the number of wavelengths can be reduced. Since routing in WDM optical network is an NP-hard problem, many heuristic algorithms are designed by many researchers to perform this routing. We will also develop a genetic algorithm, simulated annealing algorithm and ant colony technique and apply these AI algorithms to route the connections in WDM Benes network

    The impacts of timing constraints on virtual channels multiplexing in interconnect networks

    Get PDF
    Interconnect networks employing wormhole-switching play a critical role in shared memory multiprocessor systems-on-chip (MPSoC) designs, multicomputer systems and system area networks. Virtual channels greatly improve the performance of wormhole-switched networks because they reduce blocking by acting as "bypass" lanes for non-blocked messages. Capturing the effects of virtual channel multiplexing has always been a crucial issue for any analytical model proposed for wormhole-switched networks. Dally has developed a model to investigate the behaviour of this multiplexing which have been widely employed in the subsequent analytical models of most routing algorithms suggested in the literature. It is indispensable to modify Dally's model in order to evaluate the performance of channel multiplexing in more general networks where restrictions such as timing constraints of input arrivals and finite buffer size of queues are common. In this paper we consider timing constraints of input arrivals to investigate the virtual channel multiplexing problem inherent in most current networks. The analysis that we propose is completely general and therefore can be used with any interconnect networks employing virtual channels. The validity of the proposed equations has been verified through simulation experiments under different working conditions

    Discontinuous Waveband Switching in WDM Optical Networks

    Get PDF
    Routing techniques used in wavelength routed optical networks (WRN) do not give an efficient solution with Waveband routed optical networks (WBN) as the objective of routing in WRN is to reduce the blocking probability and that in WBN is to reduce the number of switching ports. Routing in WBN can be divided two parts, finding the route and grouping the wavelength assigned into that route with some existing wavelengths/wavebands. In this paper, we propose a heuristic for waveband routing, which uses a new grouping strategy called discontinuous waveband grouping to group the wavelengths into a waveband. The main objective of our algorithm is to decrease the total number of ports required and reduce the blocking probability of the network. The performance of the heuristic is analyzed using simulation on a WBN with non-uniform wavebands

    Discontinuous Waveband Switching in WDM Optical Networks

    Get PDF
    Routing techniques used in wavelength routed optical networks (WRN) do not give an efficient solution with Waveband routed optical networks (WBN) as the objective of routing in WRN is to reduce the blocking probability and that in WBN is to reduce the number of switching ports. Routing in WBN can be divided two parts, finding the route and grouping the wavelength assigned into that route with some existing wavelengths/wavebands. In this paper, we propose a heuristic for waveband routing, which uses a new grouping strategy called discontinuous waveband grouping to group the wavelengths into a waveband. The main objective of our algorithm is to decrease the total number of ports required and reduce the blocking probability of the network. The performance of the heuristic is analyzed using simulation on a WBN with non-uniform wavebands

    Optical interconnection networks based on microring resonators

    Get PDF
    Optical microring resonators can be integrated on a chip to perform switching operations directly in the optical domain. Thus they become a building block to create switching elements in on-chip optical interconnection networks, which promise to overcome some of the limitations of current electronic networks. However, the peculiar asymmetric power losses of microring resonators impose new constraints on the design and control of on-chip optical networks. In this work, we study the design of multistage interconnection networks optimized for a particular metric that we name the degradation index, which characterizes the asymmetric behavior of microrings. We also propose a routing control algorithm to maximize the overall throughput, considering the maximum allowed degradation index as a constrain

    Optical Interconnection Networks Based on Microring Resonators

    Get PDF
    Abstract — Interconnection networks must transport an always increasing information density and connect a rising number of processing units. Electronic technologies have been able to sustain the traffic growth rate, but are getting close to their physical limits. In this context, optical interconnection networks are becoming progressively more attractive, especially because new photonic devices can be directly integrated in CMOS technology. Indeed, interest in microring resonators as switching components is rising, but their usability in full optical interconnection architectures is still limited by their physical characteristics. Indeed, differently from classical devices used for switching, switching elements based on microring resonators exhibit asymmetric power losses depending on the output ports input signals are directed to. In this paper, we study classical interconnection architectures such as crossbar, Benes and Clos networks exploiting microring resonators as building blocks. Since classical interconnection networks lack either scalability or complexity, we propose two new architectures to improve performance of microring based interconnection networks while keeping a reasonable complexity. I

    Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services

    Get PDF
    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated
    corecore