904 research outputs found

    Algorithms to Detect and Rectify Multiplicative and Ordinal Inconsistencies of Fuzzy Preference Relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Consistency, multiplicative and ordinal, of fuzzy preference relations (FPRs) is investigated. The geometric consistency index (GCI) approximated thresholds are extended to measure the degree of consistency for an FPR. For inconsistent FPRs, two algorithms are devised (1) to find the multiplicative inconsistent elements, and (2) to detect the ordinal inconsistent elements. An integrated algorithm is proposed to improve simultaneously the ordinal and multiplicative consistencies. Some examples, comparative analysis, and simulation experiments are provided to demonstrate the effectiveness of the proposed methods

    On the normalization of a priority vector associated with a reciprocal relation.

    Get PDF
    In this paper we show that the widely used normalization constraint SUM(i=1,n) wi = 1 does not apply to the priority vectors associated with reciprocal relations, whenever additive transitivity is involved. We show that misleading applications of this type of normalization may lead to unsatisfactory results and we give some examples from the literature. Then, we propose an alternative normalization procedure which is compatible with additive transitivity and leads to better results.reciprocal relation; fuzzy preference relation; priority vector; normalization

    A general unified framework for pairwise comparison matrices in multicriterial methods

    Get PDF
    In a Multicriteria Decision Making context, a pairwise comparison matrix A=(aij)A=(a_{ij}) is a helpful tool to determine the weighted ranking on a set XX of alternatives or criteria. The entry aija_{ij} of the matrix can assume different meanings: aija_{ij} can be a preference ratio (multiplicative case) or a preference difference (additive case) or aija_{ij} belongs to [0,1][0,1] and measures the distance from the indifference that is expressed by 0.5 (fuzzy case). For the multiplicative case, a consistency index for the matrix AA has been provided by T.L. Saaty in terms of maximum eigenvalue. We consider pairwise comparison matrices over an abelian linearly ordered group and, in this way, we provide a general framework including the mentioned cases. By introducing a more general notion of metric, we provide a consistency index that has a natural meaning and it is easy to compute in the additive and multiplicative cases; in the other cases, it can be computed easily starting from a suitable additive or multiplicative matrix

    Incomplete interval fuzzy preference relations and their applications

    Get PDF
    This paper investigates incomplete interval fuzzy preference relations. A characterization, which is proposed by Herrera-Viedma et al. (2004), of the additive consistency property of the fuzzy preference relations is extended to a more general case. This property is further generalized to interval fuzzy preference relations (IFPRs) based on additive transitivity. Subsequently, we examine how to characterize IFPR. Using these new characterizations, we propose a method to construct an additive consistent IFPR from a set of n − 1 preference data and an estimation algorithm for acceptable incomplete IFPRs with more known elements. Numerical examples are provided to illustrate the effectiveness and practicality of the solution process

    Incomplete pairwise comparison and consistency optimization

    Get PDF
    This paper proposes a new method for calculating the missing elements of an incomplete matrix of pairwise comparison values for a decision problem. The matrix is completed by minimizing a measure of global inconsistency, thus obtaining a matrix which is optimal from the point of view of consistency with respect to the available judgements. The optimal values are obtained by solving a linear system and unicity of the solution is proved under general assumptions. Some other methods proposed in the literature are discussed and a numerical example is presented.consistency, pairwise comparison matrices

    A multi-step goal programming approach for group decision making with incomplete interval additive reciprocal comparison matrices

    Get PDF
    This article presents a goal programming framework to solve group decision making problems where decision-makers’ judgments are provided as incomplete interval additive reciprocal comparison matrices (IARCMs). New properties of multiplicative consistent IARCMs are put forward and used to define consistent incomplete IARCMs. A two-step goal programming method is developed to estimate missing values for an incomplete IARCM. The first step minimizes the inconsistency of the completed IARCMs and controls uncertainty ratios of the estimated judgments within an acceptable threshold, and the second step finds the most appropriate estimated missing values among the optimal solutions obtained from the previous step. A weighted geometric mean approach is proposed to aggregate individual IARCMs into a group IARCM by employing the lower bounds of the interval additive reciprocal judgments. A two-step procedure consisting of two goal programming models is established to derive interval weights from the group IARCM. The first model is devised to minimize the absolute difference between the logarithm of the group preference and that of the constructed multiplicative consistent judgment. The second model is developed to generate an interval-valued priority vector by maximizing the uncertainty ratio of the constructed consistent IARCM and incorporating the optimal objective value of the first model as a constraint. Two numerical examples are furnished to demonstrate validity and applicability of the proposed approach

    Consistency test and weight generation for additive interval fuzzy preference relations

    Get PDF
    Some simple yet pragmatic methods of consistency test are developed to check whether an interval fuzzy preference relation is consistent. Based on the definition of additive consistent fuzzy preference relations proposed by Tanino (Fuzzy Sets Syst 12:117–131, 1984), a study is carried out to examine the correspondence between the element and weight vector of a fuzzy preference relation. Then, a revised approach is proposed to obtain priority weights from a fuzzy preference relation. A revised definition is put forward for additive consistent interval fuzzy preference relations. Subsequently, linear programming models are established to generate interval priority weights for additive interval fuzzy preference relations. A practical procedure is proposed to solve group decision problems with additive interval fuzzy preference relations. Theoretic analysis and numerical examples demonstrate that the proposed methods are more accurate than those in Xu and Chen (Eur J Oper Res 184:266–280, 2008b)

    An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and Fusion: Taxonomy and future directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The reciprocal preference relation (RPR) is a powerful tool to represent decision makers’ preferences in decision making problems. In recent years, various types of RPRs have been reported and investigated, some of them being the ‘classical’ RPRs, interval-valued RPRs and hesitant RPRs. Additive consistency is one of the most commonly used property to measure the consistency of RPRs, with many methods developed to manage additive consistency of RPRs. To provide a clear perspective on additive consistency issues of RPRs, this paper reviews the consistency measurements of the different types of RPRs. Then, consistency-driven decision making and information fusion methods are also reviewed and classified into four main types: consistency improving methods; consistency-based methods to manage incomplete RPRs; consistency control in consensus decision making methods; and consistency-driven linguistic decision making methods. Finally, with respect to insights gained from prior researches, further directions for the research are proposed

    Estimating unknown values in reciprocal intuitionistic preference relations via asymmetric fuzzy preference relations

    Get PDF
    Intuitionistic preference relations are becoming increasingly important in the field of group decision making since they present a flexible and simple way to the experts to provide their preference relations, while at the same time allowing them to accommodate a certain degree of hesitation inherent to all decision making processes. In this contribution, we prove the mathematical equivalence between the set of asymmetric fuzzy preference relations and the set of reciprocal intuitionistic fuzzy preference relations. This result is exploited to tackle the presence of incomplete reciprocal intuitionistic fuzzy preference relation in decision making by developing a consistency driven estimation procedure via the corresponding equivalent incomplete asymmetric fuzzy preference relation
    • 

    corecore