131,700 research outputs found

    Efficient Unified Arithmetic for Hardware Cryptography

    Get PDF
    The basic arithmetic operations (i.e. addition, multiplication, and inversion) in finite fields, GF(q), where q = pk and p is a prime integer, have several applications in cryptography, such as RSA algorithm, Diffie-Hellman key exchange algorithm [1], the US federal Digital Signature Standard [2], elliptic curve cryptography [3, 4], and also recently identity based cryptography [5, 6]. Most popular finite fields that are heavily used in cryptographic applications due to elliptic curve based schemes are prime fields GF(p) and binary extension fields GF(2n). Recently, identity based cryptography based on pairing operations defined over elliptic curve points has stimulated a significant level of interest in the arithmetic of ternary extension fields, GF(3^n)

    Fast Polynomial Multiplication over F_(2^60)

    No full text
    Can post-Schönhage–Strassen multiplication algorithms be competitive in practice for large input sizes? So far, the GMP library still outperforms all implementations of the recent, asymptotically more efficient algorithms for integer multiplication by Fürer, De–Kurur–Saha–Saptharishi, and ourselves. In this paper, we show how central ideas of our recent asymptotically fast algorithms turn out to be of practical interest for multiplication of polynomials over finite fields of characteristic two. Our Mathemagix implementation is based on the automatic generation of assembly codelets. It outperforms existing implementations in large degree, especially for polynomial matrix multiplication over finite fields

    A generalized algorithm to design finite field normal basis multipliers

    Get PDF
    Finite field arithmetic logic is central in the implementation of some error-correcting coders and some cryptographic devices. There is a need for good multiplication algorithms which can be easily realized. Massey and Omura recently developed a new multiplication algorithm for finite fields based on a normal basis representation. Using the normal basis representation, the design of the finite field multiplier is simple and regular. The fundamental design of the Massey-Omura multiplier is based on a design of a product function. In this article, a generalized algorithm to locate a normal basis in a field is first presented. Using this normal basis, an algorithm to construct the product function is then developed. This design does not depend on particular characteristics of the generator polynomial of the field

    Decoding Generalized Reed-Solomon Codes and Its Application to RLCE Encryption Schemes

    Get PDF
    This paper compares the efficiency of various algorithms for implementing quantum resistant public key encryption scheme RLCE on 64-bit CPUs. By optimizing various algorithms for polynomial and matrix operations over finite fields, we obtained several interesting (or even surprising) results. For example, it is well known (e.g., Moenck 1976 \cite{moenck1976practical}) that Karatsuba's algorithm outperforms classical polynomial multiplication algorithm from the degree 15 and above (practically, Karatsuba's algorithm only outperforms classical polynomial multiplication algorithm from the degree 35 and above ). Our experiments show that 64-bit optimized Karatsuba's algorithm will only outperform 64-bit optimized classical polynomial multiplication algorithm for polynomials of degree 115 and above over finite field GF(210)GF(2^{10}). The second interesting (surprising) result shows that 64-bit optimized Chien's search algorithm ourperforms all other 64-bit optimized polynomial root finding algorithms such as BTA and FFT for polynomials of all degrees over finite field GF(210)GF(2^{10}). The third interesting (surprising) result shows that 64-bit optimized Strassen matrix multiplication algorithm only outperforms 64-bit optimized classical matrix multiplication algorithm for matrices of dimension 750 and above over finite field GF(210)GF(2^{10}). It should be noted that existing literatures and practices recommend Strassen matrix multiplication algorithm for matrices of dimension 40 and above. All our experiments are done on a 64-bit MacBook Pro with i7 CPU and single thread C codes. It should be noted that the reported results should be appliable to 64 or larger bits CPU architectures. For 32 or smaller bits CPUs, these results may not be applicable. The source code and library for the algorithms covered in this paper are available at http://quantumca.org/

    Semiinvariants of Finite Reflection Groups

    Get PDF
    Let G be a finite group of complex n by n unitary matrices generated by reflections acting on C^n. Let R be the ring of invariant polynomials, and \chi be a multiplicative character of G. Let \Omega^\chi be the R-module of \chi-invariant differential forms. We define a multiplication in \Omega^\chi and show that under this multiplication \Omega^\chi has an exterior algebra structure. We also show how to extend the results to vector fields, and exhibit a relationship between \chi-invariant forms and logarithmic forms.Comment: Paper presented at 1999 Joint Meetings in San Antonio, special session on Geometry in Dynamics. Typo correcte

    Effective arithmetic in finite fields based on Chudnovsky's multiplication algorithm

    Get PDF
    International audienceThanks to a new construction of the Chudnovsky and Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they allow computations to be parallelized, while maintaining a low number of bilinear multiplications.À partir d'une nouvelle construction de l'algorithme de multiplication de Chudnovsky et Chudnovsky, nous concevons des algorithmes efficaces pour la multiplication et l'exponentiation dans les corps finis. Ils sont adaptés à une implémentation matérielle et sont parallélisables, tout en gardant un nombre de multiplications bilinéaires très bas
    • …
    corecore