3,106 research outputs found

    Balancing Selection Pressures, Multiple Objectives, and Neural Modularity to Coevolve Cooperative Agent Behavior

    Full text link
    Previous research using evolutionary computation in Multi-Agent Systems indicates that assigning fitness based on team vs.\ individual behavior has a strong impact on the ability of evolved teams of artificial agents to exhibit teamwork in challenging tasks. However, such research only made use of single-objective evolution. In contrast, when a multiobjective evolutionary algorithm is used, populations can be subject to individual-level objectives, team-level objectives, or combinations of the two. This paper explores the performance of cooperatively coevolved teams of agents controlled by artificial neural networks subject to these types of objectives. Specifically, predator agents are evolved to capture scripted prey agents in a torus-shaped grid world. Because of the tension between individual and team behaviors, multiple modes of behavior can be useful, and thus the effect of modular neural networks is also explored. Results demonstrate that fitness rewarding individual behavior is superior to fitness rewarding team behavior, despite being applied to a cooperative task. However, the use of networks with multiple modules allows predators to discover intelligent behavior, regardless of which type of objectives are used

    A nature-inspired multi-objective optimisation strategy based on a new reduced space searching algorithm for the design of alloy steels

    Get PDF
    In this paper, a salient search and optimisation algorithm based on a new reduced space searching strategy, is presented. This algorithm originates from an idea which relates to a simple experience when humans search for an optimal solution to a ‘real-life’ problem, i.e. when humans search for a candidate solution given a certain objective, a large area tends to be scanned first; should one succeed in finding clues in relation to the predefined objective, then the search space is greatly reduced for a more detailed search. Furthermore, this new algorithm is extended to the multi-objective optimisation case. Simulation results of optimising some challenging benchmark problems suggest that both the proposed single objective and multi-objective optimisation algorithms outperform some of the other well-known Evolutionary Algorithms (EAs). The proposed algorithms are further applied successfully to the optimal design problem of alloy steels, which aims at determining the optimal heat treatment regime and the required weight percentages for chemical composites to obtain the desired mechanical properties of steel hence minimising production costs and achieving the overarching aim of ‘right-first-time production’ of metals

    The True Destination of EGO is Multi-local Optimization

    Full text link
    Efficient global optimization is a popular algorithm for the optimization of expensive multimodal black-box functions. One important reason for its popularity is its theoretical foundation of global convergence. However, as the budgets in expensive optimization are very small, the asymptotic properties only play a minor role and the algorithm sometimes comes off badly in experimental comparisons. Many alternative variants have therefore been proposed over the years. In this work, we show experimentally that the algorithm instead has its strength in a setting where multiple optima are to be identified

    Improved sampling of the pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm

    Get PDF
    Previous work on multiobjective genetic algorithms has been focused on preventing genetic drift and the issue of convergence has been given little attention. In this paper, we present a simple steady-state strategy, Pareto Converging Genetic Algorithm (PCGA), which naturally samples the solution space and ensures population advancement towards the Pareto-front. PCGA eliminates the need for sharing/niching and thus minimizes heuristically chosen parameters and procedures. A systematic approach based on histograms of rank is introduced for assessing convergence to the Pareto-front, which, by definition, is unknown in most real search problems. We argue that there is always a certain inheritance of genetic material belonging to a population, and there is unlikely to be any significant gain beyond some point; a stopping criterion where terminating the computation is suggested. For further encouraging diversity and competition, a nonmigrating island model may optionally be used; this approach is particularly suited to many difficult (real-world) problems, which have a tendency to get stuck at (unknown) local minima. Results on three benchmark problems are presented and compared with those of earlier approaches. PCGA is found to produce diverse sampling of the Pareto-front without niching and with significantly less computational effort

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    Generalized Hybrid Evolutionary Algorithm Framework with a Mutation Operator Requiring no Adaptation

    Get PDF
    This paper presents a generalized hybrid evolutionary optimization structure that not only combines both nondeterministic and deterministic algorithms on their individual merits and distinct advantages, but also offers behaviors of the three originating classes of evolutionary algorithms (EAs). In addition, a robust mutation operator is developed in place of the necessity of mutation adaptation, based on the mutation properties of binary-coded individuals in a genetic algorithm. The behaviour of this mutation operator is examined in full and its performance is compared with adaptive mutations. The results show that the new mutation operator outperforms adaptive mutation operators while reducing complications of extra adaptive parameters in an EA representation

    Sub-structural Niching in Estimation of Distribution Algorithms

    Full text link
    We propose a sub-structural niching method that fully exploits the problem decomposition capability of linkage-learning methods such as the estimation of distribution algorithms and concentrate on maintaining diversity at the sub-structural level. The proposed method consists of three key components: (1) Problem decomposition and sub-structure identification, (2) sub-structure fitness estimation, and (3) sub-structural niche preservation. The sub-structural niching method is compared to restricted tournament selection (RTS)--a niching method used in hierarchical Bayesian optimization algorithm--with special emphasis on sustained preservation of multiple global solutions of a class of boundedly-difficult, additively-separable multimodal problems. The results show that sub-structural niching successfully maintains multiple global optima over large number of generations and does so with significantly less population than RTS. Additionally, the market share of each of the niche is much closer to the expected level in sub-structural niching when compared to RTS
    corecore