27,641 research outputs found

    A Unified Framework for Linear-Programming Based Communication Receivers

    Full text link
    It is shown that a large class of communication systems which admit a sum-product algorithm (SPA) based receiver also admit a corresponding linear-programming (LP) based receiver. The two receivers have a relationship defined by the local structure of the underlying graphical model, and are inhibited by the same phenomenon, which we call 'pseudoconfigurations'. This concept is a generalization of the concept of 'pseudocodewords' for linear codes. It is proved that the LP receiver has the 'maximum likelihood certificate' property, and that the receiver output is the lowest cost pseudoconfiguration. Equivalence of graph-cover pseudoconfigurations and linear-programming pseudoconfigurations is also proved. A concept of 'system pseudodistance' is defined which generalizes the existing concept of pseudodistance for binary and nonbinary linear codes. It is demonstrated how the LP design technique may be applied to the problem of joint equalization and decoding of coded transmissions over a frequency selective channel, and a simulation-based analysis of the error events of the resulting LP receiver is also provided. For this particular application, the proposed LP receiver is shown to be competitive with other receivers, and to be capable of outperforming turbo equalization in bit and frame error rate performance.Comment: 13 pages, 6 figures. To appear in the IEEE Transactions on Communication

    Energy Efficient Transmission over Space Shift Keying Modulated MIMO Channels

    Full text link
    Energy-efficient communication using a class of spatial modulation (SM) that encodes the source information entirely in the antenna indices is considered in this paper. The energy-efficient modulation design is formulated as a convex optimization problem, where minimum achievable average symbol power consumption is derived with rate, performance, and hardware constraints. The theoretical result bounds any modulation scheme of this class, and encompasses the existing space shift keying (SSK), generalized SSK (GSSK), and Hamming code-aided SSK (HSSK) schemes as special cases. The theoretical optimum is achieved by the proposed practical energy-efficient HSSK (EE-HSSK) scheme that incorporates a novel use of the Hamming code and Huffman code techniques in the alphabet and bit-mapping designs. Experimental studies demonstrate that EE-HSSK significantly outperforms existing schemes in achieving near-optimal energy efficiency. An analytical exposition of key properties of the existing GSSK (including SSK) modulation that motivates a fundamental consideration for the proposed energy-efficient modulation design is also provided

    Deep Learning Framework for Wireless Systems: Applications to Optical Wireless Communications

    Full text link
    Optical wireless communication (OWC) is a promising technology for future wireless communications owing to its potentials for cost-effective network deployment and high data rate. There are several implementation issues in the OWC which have not been encountered in radio frequency wireless communications. First, practical OWC transmitters need an illumination control on color, intensity, and luminance, etc., which poses complicated modulation design challenges. Furthermore, signal-dependent properties of optical channels raise non-trivial challenges both in modulation and demodulation of the optical signals. To tackle such difficulties, deep learning (DL) technologies can be applied for optical wireless transceiver design. This article addresses recent efforts on DL-based OWC system designs. A DL framework for emerging image sensor communication is proposed and its feasibility is verified by simulation. Finally, technical challenges and implementation issues for the DL-based optical wireless technology are discussed.Comment: To appear in IEEE Communications Magazine, Special Issue on Applications of Artificial Intelligence in Wireless Communication

    Multicast Multigroup Precoding and User Scheduling for Frame-Based Satellite Communications

    Get PDF
    The present work focuses on the forward link of a broadband multibeam satellite system that aggressively reuses the user link frequency resources. Two fundamental practical challenges, namely the need to frame multiple users per transmission and the per-antenna transmit power limitations, are addressed. To this end, the so-called frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints. In this context, a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed. Added to that, the formulation is further extended to include availability constraints. As a result, the high gains of the sum rate optimal design are traded off to satisfy the stringent availability requirements of satellite systems. Moreover, the throughput maximization with a granular spectral efficiency versus SINR function, is formulated and solved. Finally, a multicast-aware user scheduling policy, based on the channel state information, is developed. Thus, substantial multiuser diversity gains are gleaned. Numerical results over a realistic simulation environment exhibit as much as 30% gains over conventional systems, even for 7 users per frame, without modifying the framing structure of legacy communication standards.Comment: Accepted for publication to the IEEE Transactions on Wireless Communications, 201
    corecore