1,403 research outputs found

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    Massively parallel landscape-evolution modelling using general purpose graphical processing units

    Get PDF
    As our expectations of what computer systems can do and our ability to capture data improves, the desire to perform ever more computationally intensive tasks increases. Often these tasks, comprising vast numbers of repeated computations, are highly interdependent on each other – a closely coupled problem. The process of Landscape-Evolution Modelling is an example of such a problem. In order to produce realistic models it is necessary to process landscapes containing millions of data points over time periods extending up to millions of years. This leads to non-tractable execution times, often in the order of years. Researchers therefore seek multiple orders of magnitude reduction in the execution time of these models. The massively parallel programming environment offered through General Purpose Graphical Processing Units offers the potential for multiple orders of magnitude speedup in code execution times. In this paper we demonstrate how the time dominant parts of a Landscape-Evolution Model can be recoded for a massively parallel architecture providing two orders of magnitude reduction in execution time

    Globally asynchronous locally synchronous configurable array architecture for algorithm embeddings

    Get PDF
    • …
    corecore