72,186 research outputs found

    Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets

    Get PDF
    Background and objective: In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must be dynamically allocated in accordance with continuous-time fluctuation of psychophysiological functional status of the operator, so-called operator functional state (OFS). The behavior of the HM system is hybrid in nature due to the co-existence of discrete task-load (control) variable and continuous operator performance (system output) variable. Methods: Petri net is an effective tool for modeling discrete event systems, but for hybrid system involving discrete dynamics, generally Petri net model has to be extended. Instead of using different tools to represent continuous and discrete components of a hybrid system, this paper proposed a method of fuzzy inference Petri nets (FIPN) to represent the HM hybrid system comprising a Mamdani-type fuzzy model of OFS and a logical switching controller in a unified framework, in which the task-load level is dynamically reallocated between the operator and machine based on the model-predicted OFS. Furthermore, this paper used a multi-model approach to predict the operator performance based on three electroencephalographic (EEG) input variables (features) via the Wang-Mendel (WM) fuzzy modeling method. The membership function parameters of fuzzy OFS model for each experimental participant were optimized using artificial bee colony (ABC) evolutionary algorithm. Three performance indices, RMSE, MRE, and EPR, were computed to evaluate the overall modeling accuracy. Results: Experiment data from six participants are analyzed. The results show that the proposed method (FIPN with adaptive task allocation) yields lower breakdown rate (from 14.8% to 3.27%) and higher human performance (from 90.30% to 91.99%). Conclusion: The simulation results of the FIPN-based adaptive HM (AHM) system on six experimental participants demonstrate that the FIPN framework provides an effective way to model and regulate/optimize the OFS in HM hybrid systems composed of continuous-time OFS model and discrete-event switching controller

    Stable Hybrid Fuzzy Controller-based Architecture for Robotic Telesurgery Systems

    Get PDF
    Robotic surgery and remotely controlled teleoperational systems are on the rise. However, serious limitations arise on both the hardware and software side when traditional modeling and control approaches are taken. These limitations include the incomplete modeling of robot dynamics, tool–tissue interaction, human– machine interfaces and the communication channel. Furthermore, the inherent latency of long-distance signal transmission may endanger the stability of a robot controller. All of these factors contribute to the very limited deployment of real robotic telesurgery. This paper describes a stable hybrid fuzzy controller-based architecture that is capable of handling the basic challenges. The aim is to establish high fidelity telepresence systems for medical applications by easily handled modern control solution

    Generalized dynamical fuzzy model for identification and prediction

    Get PDF
    In this paper, the development of an improved Takagi Sugeno (TS) fuzzy model for identification and chaotic time series prediction of nonlinear dynamical systems is proposed. This model combines the advantages of fuzzy systems and Infinite Impulse Response (IIR) filters, which are autoregressive moving average models, to create internal dynamics with just the control input. The structure of Fuzzy Infinite Impulse Response (FIIR) is presented, and its learning algorithm is described. In the proposed model, the Butterworth analogue prototype filters are estimated using the obtained membership functions. Based on the founding orders of the analogue filters, the IIR filters could be constructed. The IIR filters are introduced to each TS fuzzy rule which produces local dynamics. Gustafson-Kessel (GK) clustering algorithm is used to generate the clusters which will be used to find the number of the IIR parameters for each rule. The hybrid genetic algorithm and simplex method are used to identify the consequence parameters. The stability of the obtained model is studied. To demonstrate the performance of this modeling method, three examples have been chosen. Comparative results between the FIIR model on one hand, and the traditional TS fuzzy model, the neural networks and the neuro-fuzzy network on the other hand. The results show that the proposed method provides promising identification result

    On approximation properties of smooth fuzzy models

    Get PDF
    This Paper Addresses The Approximation Properties Of The Smooth Fuzzy Models. It Is Widely Recognized That The Fuzzy Models Can Approximate A Nonlinear Function To Any Degree Of Accuracy In A Convex Compact Region. However, In Many Applications, It Is Desirable To Go Beyond That And Acquire A Model To Approximate The Nonlinear Function On A Smooth Surface To Gain Better Performance And Stability Properties. Especially In The Region Around The Steady States, When Both Error And Change In Error Are Approaching Zero, It Is Much Desired To Avoid Abrupt Changes And Discontinuity In The Approximation Of The Input-Output Mapping. This Problem Has Been Remedied In Our Approach By Application Of The Smooth Compositions In The Fuzzy Modeling Scheme. In The Fuzzy Decomposition Stage Of Fuzzy Modeling, We Have Discretized The Parameters And Then Calculated The Result Through Partitioning Them Into A Dense Grid. This Could Enable Us To Present The Formulations By Convolution And Fourier Transformation Of The Parameters And Then Obtain The Approximation Properties By Studying The Structural Properties Of The Fourier Transformation And Convolution Of The Parameters. We Could Show That, Irrespective To The Shape Of The Membership Function, One Can Approximate The Dynamics And Derivative Of The Continuous Systems Together, Using The Smooth Fuzzy Structure. The Results Of The Paper Have Been Tested And Evaluated On A Discrete Event System In The Hybrid And Switched Systems Framework

    Hybrid sediment transport model for the “linguado” channel, state of Santa Catarina, Brazil

    Get PDF
    This study involves an assessment of various artificial intelligence-related techniques which aim to produce a more robust system for sediment transport modeling. The intelligent systems developed in this research are directly applicable to academic knowledge and use data from a report on "water circulation assessment in the “Linguado” Channel and Babitonga Bay ,”Santa Catarina”, Brazil, developed by  Military Engineering Institute (IME). The solution employed for sediment transport was built using an intelligent system from the conception of two hybrid models. The first was a Neuro-Fuzzy (ANFIS) hybrid model for the study of hydrodynamic behavior, aiming to determine flow rate in the channel. The second was a fuzzy genetic model, able to assess sediment transport in the “Linguado” Channel. The study's conclusion compares the different effects involved in the dredging equilibrium in the “Linguado” Channel according to this hybrid model with the results obtained using a finite element model in the MIKE21® software
    corecore