17,167 research outputs found

    The Properties of Radio Galaxies and the Effect of Environment in Large Scale Structures at z∼1z\sim1

    Get PDF
    In this study we investigate 89 radio galaxies that are spectroscopically-confirmed to be members of five large scale structures in the redshift range of 0.65≤z≤0.960.65 \le z \le 0.96. Based on a two-stage classification scheme, the radio galaxies are classified into three sub-classes: active galactic nucleus (AGN), hybrid, and star-forming galaxy (SFG). We study the properties of the three radio sub-classes and their global and local environmental preferences. We find AGN hosts are the most massive population and exhibit quiescence in their star-formation activity. The SFG population has a comparable stellar mass to those hosting a radio AGN but are unequivocally powered by star formation. Hybrids, though selected as an intermediate population in our classification scheme, were found in almost all analyses to be a unique type of radio galaxies rather than a mixture of AGN and SFGs. They are dominated by a high-excitation radio galaxy (HERG) population. We discuss environmental effects and scenarios for each sub-class. AGN tend to be preferentially located in locally dense environments and in the cores of clusters/groups, with these preferences persisting when comparing to galaxies of similar colour and stellar mass, suggesting that their activity may be ignited in the cluster/group virialized core regions. Conversely, SFGs exhibit a strong preference for intermediate-density global environments, suggesting that dusty starbursting activity in LSSs is largely driven by galaxy-galaxy interactions and merging.Comment: 28 pages, 10 figures, accepted to MNRA

    The SAGA Survey: I. Satellite Galaxy Populations Around Eight Milky Way Analogs

    Full text link
    We present the survey strategy and early results of the "Satellites Around Galactic Analogs" (SAGA) Survey. The SAGA Survey's goal is to measure the distribution of satellite galaxies around 100 systems analogous to the Milky Way down to the luminosity of the Leo I dwarf galaxy (Mr<−12.3 M_r < -12.3 ). We define a Milky Way analog based on KK-band luminosity and local environment. Here, we present satellite luminosity functions for 8 Milky Way analog galaxies between 20 to 40 Mpc. These systems have nearly complete spectroscopic coverage of candidate satellites within the projected host virial radius down to ro<20.75 r_o < 20.75 using low redshift grigri color criteria. We have discovered a total of 25 new satellite galaxies: 14 new satellite galaxies meet our formal criteria around our complete host systems, plus 11 additional satellites in either incompletely surveyed hosts or below our formal magnitude limit. Combined with 13 previously known satellites, there are a total of 27 satellites around 8 complete Milky Way analog hosts. We find a wide distribution in the number of satellites per host, from 1 to 9, in the luminosity range for which there are five Milky Way satellites. Standard abundance matching extrapolated from higher luminosities predicts less scatter between hosts and a steeper luminosity function slope than observed. We find that the majority of satellites (26 of 27) are star-forming. These early results indicate that the Milky Way has a different satellite population than typical in our sample, potentially changing the physical interpretation of measurements based only on the Milky Way's satellite galaxies.Comment: 22 pages, 19 figures, 2 tables. Updated to published version. Survey website: http://sagasurvey.org

    Characterization of Metabolic, Diffusion, and Perfusion Properties in GBM: Contrast-Enhancing versus Non-Enhancing Tumor.

    Get PDF
    BackgroundAlthough the contrast-enhancing (CE) lesion on T1-weighted MR images is widely used as a surrogate for glioblastoma (GBM), there are also non-enhancing regions of infiltrative tumor within the T2-weighted lesion, which elude radiologic detection. Because non-enhancing GBM (Enh-) challenges clinical patient management as latent disease, this study sought to characterize ex vivo metabolic profiles from Enh- and CE GBM (Enh+) samples, alongside histological and in vivo MR parameters, to assist in defining criteria for estimating total tumor burden.MethodsFifty-six patients with newly diagnosed GBM received a multi-parametric pre-surgical MR examination. Targets for obtaining image-guided tissue samples were defined based on in vivo parameters that were suspicious for tumor. The actual location from where tissue samples were obtained was recorded, and half of each sample was analyzed for histopathology while the other half was scanned using HR-MAS spectroscopy.ResultsThe Enh+ and Enh- tumor samples demonstrated comparable mitotic activity, but also significant heterogeneity in microvascular morphology. Ex vivo spectroscopic parameters indicated similar levels of total choline and N-acetylaspartate between these contrast-based radiographic subtypes of GBM, and characteristic differences in the levels of myo-inositol, creatine/phosphocreatine, and phosphoethanolamine. Analysis of in vivo parameters at the sample locations were consistent with histological and ex vivo metabolic data.ConclusionsThe similarity between ex vivo levels of choline and NAA, and between in vivo levels of choline, NAA and nADC in Enh+ and Enh- tumor, indicate that these parameters can be used in defining non-invasive metrics of total tumor burden for patients with GBM

    Extragalactic Science, Cosmology and Galactic Archaeology with the Subaru Prime Focus Spectrograph (PFS)

    Full text link
    The Subaru Prime Focus Spectrograph (PFS) is a massively-multiplexed fiber-fed optical and near-infrared 3-arm spectrograph (N_fiber=2400, 380<lambda<1260nm, 1.3 degree diameter FoV), offering unique opportunities in survey astronomy. Here we summarize the science case feasible for a survey of Subaru 300 nights. We describe plans to constrain the nature of dark energy via a survey of emission line galaxies spanning a comoving volume of 9.3 (Gpc/h)^3 in the redshift range 0.8<z<2.4. In each of 6 redshift bins, the cosmological distances will be measured to 3% precision via BAO, and redshift-space distortions will be used to constrain structure growth to 6% precision. In the GA program, radial velocities and chemical abundances of stars in the Milky Way and M31 will be used to infer the past assembly histories of spiral galaxies and the structure of their dark matter halos. Data will be secured for 10^6 stars in the Galactic thick-disk, halo and tidal streams as faint as V~22, including stars with V < 20 to complement the goals of the Gaia mission. A medium-resolution mode with R = 5000 to be implemented in the red arm will allow the measurement of multiple alpha-element abundances and more precise velocities for Galactic stars, elucidating the detailed chemo-dynamical structure and evolution of each of the main stellar components of the Milky Way Galaxy and of its dwarf spheroidal galaxies. For the extragalactic program, our simulations suggest the wide avelength range will be powerful in probing the galaxy population and its clustering over a wide redshift range. We propose to conduct a color-selected survey of 1<z<2 galaxies and AGN over 16 deg^2 to J~23.4, yielding a fair sample of galaxies with stellar masses above ~10^{10}Ms at z~2. A two-tiered survey of higher redshift LBGs and LAEs will quantify the properties of early systems close to the reionization epoch.Comment: This document describes the scientific program and requirements for the Subaru Prime Focus Spectrograph (PFS) project. Made significant revision based on studies for the Preliminary Design Review (PRD) held in Feb 2013. The higher-resolution paper file is available from http://member.ipmu.jp/masahiro.takada/pfs_astroph_rv.pd

    The NGC 5846 Group: Dynamics and the Luminosity Function to M_R=-12

    Full text link
    We conduct a photometric and spectroscopic survey of a 10 sq. deg. region surrounding the nearby NGC 5846 group of galaxies, using the Canada-France-Hawaii and Keck I telescopes to study the population of dwarf galaxies as faint as M_R=-10. Candidates are identified on the basis of quantitative surface brightness and qualitative morphological criteria. Spectroscopic follow up and a spatial correlation analysis provide the basis for affirming group memberships. Altogether, 324 candidates are identified and 83 have spectroscopic membership confirmation. We argue on statistical grounds that a total 251 +/- 10 galaxies in our sample are group members. The observations, together with archival Sloan Digital Sky Survey, ROSAT, XMM-Newton, and ASCA data, suggest that the giant ellipticals NGC 5846 and NGC 5813 are the dominant components of subgroups separated by 600 kpc in projection and embedded in a 1.6 Mpc diameter dynamically evolved halo. The galaxy population is overwhelmingly early type. The group velocity dispersion is 322 km/s, its virial mass is 8.4 x 10^13 M_sun, and M/L_R = 320 M_sun/L_sun. The ratio of dwarfs to giants is large compared with other environments in the Local Supercluster studied and, correspondingly, the luminosity function is relatively steep, with a faint end Schechter function slope of \alpha_d = -1.3 +/- 0.1 (statistical) +/- 0.1 (systematic) at our completeness limit of M_R = -12.Comment: 17 pages; accepted for publication in the Astronomical Journa
    • …
    corecore