1,405 research outputs found

    Improving Transient Performance of Adaptive Control Architectures using Frequency-Limited System Error Dynamics

    Full text link
    We develop an adaptive control architecture to achieve stabilization and command following of uncertain dynamical systems with improved transient performance. Our framework consists of a new reference system and an adaptive controller. The proposed reference system captures a desired closed-loop dynamical system behavior modified by a mismatch term representing the high-frequency content between the uncertain dynamical system and this reference system, i.e., the system error. In particular, this mismatch term allows to limit the frequency content of the system error dynamics, which is used to drive the adaptive controller. It is shown that this key feature of our framework yields fast adaptation with- out incurring high-frequency oscillations in the transient performance. We further show the effects of design parameters on the system performance, analyze closeness of the uncertain dynamical system to the unmodified (ideal) reference system, discuss robustness of the proposed approach with respect to time-varying uncertainties and disturbances, and make connections to gradient minimization and classical control theory.Comment: 27 pages, 7 figure

    Experimental comparison of parameter estimation methods in adaptive robot control

    Get PDF
    In the literature on adaptive robot control a large variety of parameter estimation methods have been proposed, ranging from tracking-error-driven gradient methods to combined tracking- and prediction-error-driven least-squares type adaptation methods. This paper presents experimental data from a comparative study between these adaptation methods, performed on a two-degrees-of-freedom robot manipulator. Our results show that the prediction error concept is sensitive to unavoidable model uncertainties. We also demonstrate empirically the fast convergence properties of least-squares adaptation relative to gradient approaches. However, in view of the noise sensitivity of the least-squares method, the marginal performance benefits, and the computational burden, we (cautiously) conclude that the tracking-error driven gradient method is preferred for parameter adaptation in robotic applications

    Connections Between Adaptive Control and Optimization in Machine Learning

    Full text link
    This paper demonstrates many immediate connections between adaptive control and optimization methods commonly employed in machine learning. Starting from common output error formulations, similarities in update law modifications are examined. Concepts in stability, performance, and learning, common to both fields are then discussed. Building on the similarities in update laws and common concepts, new intersections and opportunities for improved algorithm analysis are provided. In particular, a specific problem related to higher order learning is solved through insights obtained from these intersections.Comment: 18 page

    Parameter Estimation of Sigmoid Superpositions: Dynamical System Approach

    Full text link
    Superposition of sigmoid function over a finite time interval is shown to be equivalent to the linear combination of the solutions of a linearly parameterized system of logistic differential equations. Due to the linearity with respect to the parameters of the system, it is possible to design an effective procedure for parameter adjustment. Stability properties of this procedure are analyzed. Strategies shown in earlier studies to facilitate learning such as randomization of a learning sequence and adding specially designed disturbances during the learning phase are requirements for guaranteeing convergence in the learning scheme proposed.Comment: 30 pages, 7 figure

    Nonlinear and adaptive estimation techniques in reentry

    Get PDF
    The development and testing of nonlinear and adaptive estimators for reentry (e.g. space shuttle) navigation and model parameter estimation or identification are reported. Of particular interest is the identifcation of vehicle lift and drag characteristics in real time. Several nonlinear filters were developed and simulated. Adaptive filters for the real time identification of vehicle lift and drag characteristics, and unmodelable acceleration, were also developed and tested by simulation. The simulations feature an uncertain system environment with rather arbitrary model errors, thus providing a definitive test of estimator performance. It was found that nonlinear effects are indeed significant in reentry trajectory estimation and a nonlinear filter is demonstrated which successfully tracks through nonlinearities without degrading the information content of the data. Under the same conditions the usual extended Kalman filter diverges and is useless. The J-adaptive filter is shown to successfully track errors in the modeled vehicle lift and drag characteristics. The same filter concept is also shown to track successfully through rather arbitrary model errors, including lift and drag errors, vehicle mass errors, atmospheric density errors, and wind gust errors
    • …
    corecore