1,852 research outputs found

    A Monte Carlo method for the spread of mobile malware

    Full text link
    A new model for the spread of mobile malware based on proximity (i.e. Bluetooth, ad-hoc WiFi or NFC) is introduced. The spread of malware is analyzed using a Monte Carlo method and the results of the simulation are compared with those from mean field theory.Comment: 11 pages, 2 figure

    Malware "Ecology" Viewed as Ecological Succession: Historical Trends and Future Prospects

    Full text link
    The development and evolution of malware including computer viruses, worms, and trojan horses, is shown to be closely analogous to the process of community succession long recognized in ecology. In particular, both changes in the overall environment by external disturbances, as well as, feedback effects from malware competition and antivirus coevolution have driven community succession and the development of different types of malware with varying modes of transmission and adaptability.Comment: 13 pages, 3 figure

    Android Applications Security

    Get PDF
    The use of smartphones worldwide is growing very fast and also the malicious attacks have increased. The mobile security applications development keeps the pace with this trend. The paper presents the vulnerabilities of mobile applications. The Android applications and devices are analyzed through the security perspective. The usage of restricted API is also presented. The paper also focuses on how users can prevent these malicious attacks and propose some prevention measures, including the architecture of a mobile security system for Android devices.Mobile Application, Security, Malware, Android, Permissions

    A Novel Approach to Trojan Horse Detection in Mobile Phones Messaging and Bluetooth Services

    Get PDF
    A method to detect Trojan horses in messaging and Bluetooth in mobile phones by means of monitoring the events produced by the infections is presented in this paper. The structure of the detection approach is split into two modules: the first is the Monitoring module which controls connection requests and sent/received files, and the second is the Graphical User module which shows messages and, under suspicious situations, reports the user about a possible malware. Prototypes have been implemented on different mobile operating systems to test its feasibility on real cellphone malware. Experimental results are shown to be promising since this approach effectively detects various known malwareMinisterio de Ciencia e Innovación TIN2009-14378-C02-0

    The Paradox of Choice: Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach

    Get PDF
    The increase in the number of mobile devices that use the Android operating system has attracted the attention of cybercriminals who want to disrupt or gain unauthorized access to them through malware infections. To prevent such malware, cybersecurity experts and researchers require datasets of malware samples that most available antivirus software programs cannot detect. However, researchers have infrequently discussed how to identify evolving Android malware characteristics from different sources. In this paper, we analyze a wide variety of Android malware datasets to determine more discriminative features such as permissions and intents. We then apply machine-learning techniques on collected samples of different datasets based on the acquired features’ similarity. We perform random sampling on each cluster of collected datasets to check the antivirus software’s capability to detect the sample. We also discuss some common pitfalls in selecting datasets. Our findings benefit firms by acting as an exhaustive source of information about leading Android malware datasets
    corecore