463 research outputs found

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k≥3k \geq 3, deciding whether src(G)≤k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2−ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    (SI10-054) Nonsplit Edge Geodetic Domination Number of a Graph

    Get PDF
    In this paper, we have defined an inventive parameter called the nonsplit edge geodetic domination number of a graph, and some of its general properties are studied. The nonsplit edge geodetic domination number of some standard graph is obtained. In this work, we also determine the realization results of the nonsplit edge geodetic domination number and the edge geodetic number of a graph

    Geodetic domination integrity in graphs

    Get PDF
    Reciprocal version of product degree distance of cactus graphs Let G be a simple graph. A subset S ⊆ V (G) is a said to be a geodetic set if every vertex u /∈ S lies on a shortest path between two vertices from S. The minimum cardinality of such a set S is the geodetic number g(G) of G. A subset D ⊆ V (G) is a dominating set of G if every vertex u /∈ D has at least one neighbor in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset is said to be a geodetic dominating set of G if it is both a geodetic and a dominating set. The geodetic domination number γg(G) is the minimum cardinality among all geodetic dominating sets in G. The geodetic domination integrity of a graph G is defined by DIg(G) = min{|S| + m(G − S) : S is a geodetic dominating set of G}, where m(G − S) denotes the order of the largest component in G−S. In this paper, we study the concepts of geodetic dominating integrity of some families of graphs and derive some bounds for the geodetic domination integrity. Also we obtain geodetic domination integrity of some cartesian product of graphs.Publisher's Versio

    Revisiting path-type covering and partitioning problems

    Get PDF
    This is a survey article which is at the initial stage. The author will appreciate to receive your comments and contributions to improve the quality of the article. The author's contact address is [email protected] problems belong to the foundation of graph theory. There are several types of covering problems in graph theory such as covering the vertex set by stars (domination problem), covering the vertex set by cliques (clique covering problem), covering the vertex set by independent sets (coloring problem), and covering the vertex set by paths or cycles. A similar concept which is partitioning problem is also equally important. Lately research in graph theory has produced unprecedented growth because of its various application in engineering and science. The covering and partitioning problem by paths itself have produced a sizable volume of literatures. The research on these problems is expanding in multiple directions and the volume of research papers is exploding. It is the time to simplify and unify the literature on different types of the covering and partitioning problems. The problems considered in this article are path cover problem, induced path cover problem, isometric path cover problem, path partition problem, induced path partition problem and isometric path partition problem. The objective of this article is to summarize the recent developments on these problems, classify their literatures and correlate the inter-relationship among the related concepts

    Odd graphs

    Get PDF

    Rebuilding convex sets in graphs

    Get PDF
    The usual distance between pairs of vertices in a graph naturally gives rise to the notion of an interval between a pair of vertices in a graph. This in turn allows us to extend the notions of convex sets, convex hull, and extreme points in Euclidean space to the vertex set of a graph. The extreme vertices of a graph are known to be precisely the simplicial vertices, i.e., the vertices whose neighborhoods are complete graphs. It is known that the class of graphs with the Minkowski–Krein–Milman property, i.e., the property that every convex set is the convex hull of its extreme points, is precisely the class of chordal graphs without induced 3-fans. We define a vertex to be a contour vertex if the eccentricity of every neighbor is at most as large as that of the vertex. In this paper we show that every convex set of vertices in a graph is the convex hull of the collection of its contour vertices. We characterize those graphs for which every convex set has the property that its contour vertices coincide with its extreme points. A set of vertices in a graph is a geodetic set if the union of the intervals between pairs of vertices in the set, taken over all pairs in the set, is the entire vertex set. We show that the contour vertices in distance hereditary graphs form a geodetic set

    The Detour Domination and Connected Detour Domination values of a graph

    Get PDF
    The number of -sets that  belongs to in G is defined as the detour domination value of indicated by for each vertex . In this article, we examined at the concept of a graph’s detour domination value. The connected detour domination values of a vertex  represented as  , are defined as the number of -sets to which a vertex belongs  to G. Some of the related detour dominating values in graphs’ general characteristics are examined. This concept’s satisfaction of some general properties is investigated. Some common graphs are established
    • …
    corecore