76,907 research outputs found

    Ultrafilters maximal for finite embeddability

    Get PDF
    In [1] the authors showed some basic properties of a pre-order that arose in combinatorial number theory, namely the finite embeddability between sets of natural numbers, and they presented its generalization to ultrafilters, which is related to the algebraical and topological structure of the Stone-\v{C}ech compactification of the discrete space of natural numbers. In this present paper we continue the study of these pre-orders. In particular, we prove that there exist ultrafilters maximal for finite embeddability, and we show that the set of such ultrafilters is the closure of the minimal bilateral ideal in the semigroup (\bN,\oplus), namely \overline{K(\bN,\oplus)}. As a consequence, we easily derive many combinatorial properties of ultrafilters in \overline{K(\bN,\oplus)}. We also give an alternative proof of our main result based on nonstandard models of arithmetic

    Incremental, Inductive Coverability

    Full text link
    We give an incremental, inductive (IC3) procedure to check coverability of well-structured transition systems. Our procedure generalizes the IC3 procedure for safety verification that has been successfully applied in finite-state hardware verification to infinite-state well-structured transition systems. We show that our procedure is sound, complete, and terminating for downward-finite well-structured transition systems---where each state has a finite number of states below it---a class that contains extensions of Petri nets, broadcast protocols, and lossy channel systems. We have implemented our algorithm for checking coverability of Petri nets. We describe how the algorithm can be efficiently implemented without the use of SMT solvers. Our experiments on standard Petri net benchmarks show that IC3 is competitive with state-of-the-art implementations for coverability based on symbolic backward analysis or expand-enlarge-and-check algorithms both in time taken and space usage.Comment: Non-reviewed version, original version submitted to CAV 2013; this is a revised version, containing more experimental results and some correction

    Area-Universal Rectangular Layouts

    Get PDF
    A rectangular layout is a partition of a rectangle into a finite set of interior-disjoint rectangles. Rectangular layouts appear in various applications: as rectangular cartograms in cartography, as floorplans in building architecture and VLSI design, and as graph drawings. Often areas are associated with the rectangles of a rectangular layout and it might hence be desirable if one rectangular layout can represent several area assignments. A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout. We identify a simple necessary and sufficient condition for a rectangular layout to be area-universal: a rectangular layout is area-universal if and only if it is one-sided. More generally, given any rectangular layout L and any assignment of areas to its regions, we show that there can be at most one layout (up to horizontal and vertical scaling) which is combinatorially equivalent to L and achieves a given area assignment. We also investigate similar questions for perimeter assignments. The adjacency requirements for the rectangles of a rectangular layout can be specified in various ways, most commonly via the dual graph of the layout. We show how to find an area-universal layout for a given set of adjacency requirements whenever such a layout exists.Comment: 19 pages, 16 figure

    Analysis of Probabilistic Basic Parallel Processes

    Full text link
    Basic Parallel Processes (BPPs) are a well-known subclass of Petri Nets. They are the simplest common model of concurrent programs that allows unbounded spawning of processes. In the probabilistic version of BPPs, every process generates other processes according to a probability distribution. We study the decidability and complexity of fundamental qualitative problems over probabilistic BPPs -- in particular reachability with probability 1 of different classes of target sets (e.g. upward-closed sets). Our results concern both the Markov-chain model, where processes are scheduled randomly, and the MDP model, where processes are picked by a scheduler.Comment: This is the technical report for a FoSSaCS'14 pape

    Lossy Channel Games under Incomplete Information

    Get PDF
    In this paper we investigate lossy channel games under incomplete information, where two players operate on a finite set of unbounded FIFO channels and one player, representing a system component under consideration operates under incomplete information, while the other player, representing the component's environment is allowed to lose messages from the channels. We argue that these games are a suitable model for synthesis of communication protocols where processes communicate over unreliable channels. We show that in the case of finite message alphabets, games with safety and reachability winning conditions are decidable and finite-state observation-based strategies for the component can be effectively computed. Undecidability for (weak) parity objectives follows from the undecidability of (weak) parity perfect information games where only one player can lose messages.Comment: In Proceedings SR 2013, arXiv:1303.007

    Approaching the Coverability Problem Continuously

    Get PDF
    The coverability problem for Petri nets plays a central role in the verification of concurrent shared-memory programs. However, its high EXPSPACE-complete complexity poses a challenge when encountered in real-world instances. In this paper, we develop a new approach to this problem which is primarily based on applying forward coverability in continuous Petri nets as a pruning criterion inside a backward coverability framework. A cornerstone of our approach is the efficient encoding of a recently developed polynomial-time algorithm for reachability in continuous Petri nets into SMT. We demonstrate the effectiveness of our approach on standard benchmarks from the literature, which shows that our approach decides significantly more instances than any existing tool and is in addition often much faster, in particular on large instances.Comment: 18 pages, 4 figure

    Weak Alternating Timed Automata

    Full text link
    Alternating timed automata on infinite words are considered. The main result is a characterization of acceptance conditions for which the emptiness problem for these automata is decidable. This result implies new decidability results for fragments of timed temporal logics. It is also shown that, unlike for MITL, the characterisation remains the same even if no punctual constraints are allowed

    Decisive Markov Chains

    Get PDF
    We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In particular, this holds for probabilistic lossy channel systems (PLCS). Furthermore, all globally coarse Markov chains are decisive. This class includes probabilistic vector addition systems (PVASS) and probabilistic noisy Turing machines (PNTM). We consider both safety and liveness problems for decisive Markov chains, i.e., the probabilities that a given set of states F is eventually reached or reached infinitely often, respectively. 1. We express the qualitative problems in abstract terms for decisive Markov chains, and show an almost complete picture of its decidability for PLCS, PVASS and PNTM. 2. We also show that the path enumeration algorithm of Iyer and Narasimha terminates for decisive Markov chains and can thus be used to solve the approximate quantitative safety problem. A modified variant of this algorithm solves the approximate quantitative liveness problem. 3. Finally, we show that the exact probability of (repeatedly) reaching F cannot be effectively expressed (in a uniform way) in Tarski-algebra for either PLCS, PVASS or (P)NTM.Comment: 32 pages, 0 figure
    • 

    corecore