373 research outputs found

    Fault-tolerant wireless sensor networks using evolutionary games

    Get PDF
    This dissertation proposes an approach to creating robust communication systems in wireless sensor networks, inspired by biological and ecological systems, particularly by evolutionary game theory. In this approach, a virtual community of agents live inside the network nodes and carry out network functions. The agents use different strategies to execute their functions, and these strategies are tested and selected by playing evolutionary games. Over time, agents with the best strategies survive, while others die. The strategies and the game rules provide the network with an adaptive behavior that allows it to react to changes in environmental conditions by adapting and improving network behavior. To evaluate the viability of this approach, this dissertation also describes a micro-component framework for implementing agent-based wireless sensor network services, an evolutionary data collection protocol built using this framework, ECP, and experiments evaluating the performance of this protocol in a faulty environment. The framework addresses many of the programming challenges in writing network software for wireless sensor networks, while the protocol built using the framework provides a means of evaluating the general viability of the agent-based approach. The results of this evaluation show that an evolutionary approach to designing wireless sensor networks can improve the performance of wireless sensor network protocols in the presence of node failures. In particular, we compared the performance of ECP with a non-evolutionary rule-based variant of ECP. While the purely-evolutionary version of ECP has more routing timeouts than the rule-based approach in failure-free networks, it sends significantly fewer beacon packets and incurs statistically fewer routing timeouts in both simple fault and periodic fault scenarios

    Implementation and Analysis of Practical Algorithm for Data Security

    Get PDF
    In this paper, we present a complete implementation of the Practical Algorithm for Data Security (PADS) proposed by Albath et al., an end-to-end security scheme employing symmetric key encryption. The implementation takes full advantage of the modular design of the TinyOS environment. The simplicity of the algorithm allows for efficient implementation in hardware, a requirement for resource constrained devices. The protocol adds only four bytes of data per packet, on par with industry standards. Simulation and empirical results of the scheme are also provided. The analysis shows that the Practical Algorithm for Data Security is superior to standard security schemes

    Agilla: A Mobile Agent Middleware for Sensor Networks

    Get PDF
    Agilla is a mobile agent middleware for sensor networks. Mobile agents are special processes that can migrate across sensors. They increase network flexibility by enabling active in-network reprogramming. Neighbor lists and tuple spaces are used for agent coordination. Agilla was originally implemented on Mica2 motes, but has been ported to other platforms. Its Mica2 implementation consumes 41.6KB of code and 3.59KB of data memory. Agents can move five hops in less than 1.1s with over 92% success. Agilla was used to develop multiple applications related to fire detection and tracking, cargo container monitoring, and robot navigation

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Development of a Sensor Node for Precision Horticulture

    Get PDF
    This paper presents the design of a new wireless sensor node (GAIA Soil-Mote) for precision horticulture applications which permits the use of precision agricultural instruments based on the SDI-12 standard. Wireless communication is achieved with a transceiver compliant with the IEEE 802.15.4 standard. The GAIA Soil-Mote software implementation is based on TinyOS. A two-phase methodology was devised to validate the design of this sensor node. The first phase consisted of laboratory validation of the proposed hardware and software solution, including a study on power consumption and autonomy. The second phase consisted of implementing a monitoring application in a real broccoli (Brassica oleracea L. var Marathon) crop in Campo de Cartagena in south-east Spain. In this way the sensor node was validated in real operating conditions. This type of application was chosen because there is a large potential market for it in the farming sector, especially for the development of precision agriculture applications

    Context aware Sensor Networks

    Get PDF

    Wireless Sensor Networks for Fire Detection and Control

    Get PDF
    Due to current technological progress, the manufacturing of tiny and low price sensors became technically and economically feasible. Sensors can measure physical surroundings related to the environment and convert them into an electric signal. A huge quantity of these disposable sensors is networked to detect and monitor fire. This paper provides an analysis of utilisation of wireless sensor networks for fire detection and control
    corecore