9,492 research outputs found

    Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems

    Full text link
    The operations drip and mate considered in (mem)brane computing resemble the operations cut and recombination well known from DNA computing. We here consider sets of vesicles with multisets of objects on their outside membrane interacting by drip and mate in two different setups: in test tube systems, the vesicles may pass from one tube to another one provided they fulfill specific constraints; in tissue-like P systems, the vesicles are immediately passed to specified cells after having undergone a drip or mate operation. In both variants, computational completeness can be obtained, yet with different constraints for the drip and mate operations

    The DBSCAN Clustering Algorithm on P Systems

    Get PDF
    We show how to implement the DBSCAN clustering algorithm (Density Based Spatial Clustering of Applications with Noise) on membrane systems using evolution rules with promoters and priorities

    The silicon trypanosome

    Get PDF
    African trypanosomes have emerged as promising unicellular model organisms for the next generation of systems biology. They offer unique advantages, due to their relative simplicity, the availability of all standard genomics techniques and a long history of quantitative research. Reproducible cultivation methods exist for morphologically and physiologically distinct life-cycle stages. The genome has been sequenced, and microarrays, RNA-interference and high-accuracy metabolomics are available. Furthermore, the availability of extensive kinetic data on all glycolytic enzymes has led to the early development of a complete, experiment-based dynamic model of an important biochemical pathway. Here we describe the achievements of trypanosome systems biology so far and outline the necessary steps towards the ambitious aim of creating a , a comprehensive, experiment-based, multi-scale mathematical model of trypanosome physiology. We expect that, in the long run, the quantitative modelling enabled by the Silicon Trypanosome will play a key role in selecting the most suitable targets for developing new anti-parasite drugs

    The Transcriptional Landscape of Marek’s Disease Virus in Primary Chicken B Cells Reveals Novel Splice Variants and Genes

    Get PDF
    Marek’s disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and poses a serious threat to poultry health. In infected animals, MDV efficiently replicates in B cells in various lymphoid organs. Despite many years of research, the viral transcriptome in primary target cells of MDV remained unknown. In this study, we uncovered the transcriptional landscape of the very virulent RB1B strain and the attenuated CVI988/Rispens vaccine strain in primary chicken B cells using high-throughput RNA-sequencing. Our data confirmed the expression of known genes, but also identified a novel spliced MDV gene in the unique short region of the genome. Furthermore, de novo transcriptome assembly revealed extensive splicing of viral genes resulting in coding and non-coding RNA transcripts. A novel splicing isoform of MDV UL15 could also be confirmed by mass spectrometry and RT-PCR. In addition, we could demonstrate that the associated transcriptional motifs are highly conserved and closely resembled those of the host transcriptional machinery. Taken together, our data allow a comprehensive re-annotation of the MDV genome with novel genes and splice variants that could be targeted in further research on MDV replication and tumorigenesis

    Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types

    Get PDF
    Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA), and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like), or hotspot mutation profile (oncogene-like). Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis

    Recent Computability Models Inspired from Biology: DNA and Membrane Computing

    Get PDF

    Computing with Membranes and Picture Arrays

    Get PDF
    Splicing systems were introduced by Tom Head [3] on biological considerations to model certain recombinant behaviour of DNA molecules. An effective extension of this operation to images was introduced by Helen Chandra et al. [5] and H array splicing systems were considered. A new method of applying the splicing operation on images of hexagonal arrays was introduced by Thomas et al. [12] and generated a new class of hexagonal array languages HASSL. On the other hand, P systems, introduced by Paun [6] generating rectangular arrays and hexagonal arrays have been studied in the literature, bringing together the two areas of theoretical computer science namely membrane computing and picture languages. P system with array objects and parallel splicing operation on arrays is introduced as a simple and effective extension of P system with operation of splicing on strings and this new class of array languages is compared with the existing families of array languages. Also we propose another P system with hexagonal array objects and parallel splicing operation on hexagonal arrays is introduced and this new class of hexagonal array languages is compared with the existing families of hexagonal array languages

    A conformational RNA zipper promotes intron ejection during non-conventional XBP1 mRNA splicing.

    Get PDF
    The kinase/endonuclease IRE1 is the most conserved signal transducer of the unfolded protein response (UPR), an intracellular signaling network that monitors and regulates the protein folding capacity of the endoplasmic reticulum (ER). Upon sensing protein folding perturbations in the ER, IRE1 initiates the unconventional splicing of XBP1 mRNA culminating in the production of the transcription factor XBP1s, which expands the ER's protein folding capacity. We show that an RNA-intrinsic conformational change causes the intron of XBP1 mRNA to be ejected and the exons to zipper up into an extended stem, juxtaposing the RNA ends for ligation. These conformational rearrangements are important for XBP1 mRNA splicing in vivo. The features that point to such active participation of XBP1 mRNA in the splicing reaction are highly conserved throughout metazoan evolution, supporting their importance in orchestrating XBP1 mRNA processing with efficiency and fidelity

    A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice

    Get PDF
    Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases
    corecore