76 research outputs found

    A review of population-based metaheuristics for large-scale black-box global optimization: Part A

    Get PDF
    Scalability of optimization algorithms is a major challenge in coping with the ever growing size of optimization problems in a wide range of application areas from high-dimensional machine learning to complex large-scale engineering problems. The field of large-scale global optimization is concerned with improving the scalability of global optimization algorithms, particularly population-based metaheuristics. Such metaheuristics have been successfully applied to continuous, discrete, or combinatorial problems ranging from several thousand dimensions to billions of decision variables. In this two-part survey, we review recent studies in the field of large-scale black-box global optimization to help researchers and practitioners gain a bird’s-eye view of the field, learn about its major trends, and the state-of-the-art algorithms. Part of the series covers two major algorithmic approaches to large-scale global optimization: problem decomposition and memetic algorithms. Part of the series covers a range of other algorithmic approaches to large-scale global optimization, describes a wide range of problem areas, and finally touches upon the pitfalls and challenges of current research and identifies several potential areas for future research

    Towards a more efficient use of computational budget in large-scale black-box optimization

    Get PDF
    Evolutionary algorithms are general purpose optimizers that have been shown effective in solving a variety of challenging optimization problems. In contrast to mathematical programming models, evolutionary algorithms do not require derivative information and are still effective when the algebraic formula of the given problem is unavailable. Nevertheless, the rapid advances in science and technology have witnessed the emergence of more complex optimization problems than ever, which pose significant challenges to traditional optimization methods. The dimensionality of the search space of an optimization problem when the available computational budget is limited is one of the main contributors to its difficulty and complexity. This so-called curse of dimensionality can significantly affect the efficiency and effectiveness of optimization methods including evolutionary algorithms. This research aims to study two topics related to a more efficient use of computational budget in evolutionary algorithms when solving large-scale black-box optimization problems. More specifically, we study the role of population initializers in saving the computational resource, and computational budget allocation in cooperative coevolutionary algorithms. Consequently, this dissertation consists of two major parts, each of which relates to one of these research directions. In the first part, we review several population initialization techniques that have been used in evolutionary algorithms. Then, we categorize them from different perspectives. The contribution of each category to improving evolutionary algorithms in solving large-scale problems is measured. We also study the mutual effect of population size and initialization technique on the performance of evolutionary techniques when dealing with large-scale problems. Finally, assuming uniformity of initial population as a key contributor in saving a significant part of the computational budget, we investigate whether achieving a high-level of uniformity in high-dimensional spaces is feasible given the practical restriction in computational resources. In the second part of the thesis, we study the large-scale imbalanced problems. In many real world applications, a large problem may consist of subproblems with different degrees of difficulty and importance. In addition, the solution to each subproblem may contribute differently to the overall objective value of the final solution. When the computational budget is restricted, which is the case in many practical problems, investing the same portion of resources in optimizing each of these imbalanced subproblems is not the most efficient strategy. Therefore, we examine several ways to learn the contribution of each subproblem, and then, dynamically allocate the limited computational resources in solving each of them according to its contribution to the overall objective value of the final solution. To demonstrate the effectiveness of the proposed framework, we design a new set of 40 large-scale imbalanced problems and study the performance of some possible instances of the framework

    Mixed Order Hyper-Networks for Function Approximation and Optimisation

    Get PDF
    Many systems take inputs, which can be measured and sometimes controlled, and outputs, which can also be measured and which depend on the inputs. Taking numerous measurements from such systems produces data, which may be used to either model the system with the goal of predicting the output associated with a given input (function approximation, or regression) or of finding the input settings required to produce a desired output (optimisation, or search). Approximating or optimising a function is central to the field of computational intelligence. There are many existing methods for performing regression and optimisation based on samples of data but they all have limitations. Multi layer perceptrons (MLPs) are universal approximators, but they suffer from the black box problem, which means their structure and the function they implement is opaque to the user. They also suffer from a propensity to become trapped in local minima or large plateaux in the error function during learning. A regression method with a structure that allows models to be compared, human knowledge to be extracted, optimisation searches to be guided and model complexity to be controlled is desirable. This thesis presents such as method. This thesis presents a single framework for both regression and optimisation: the mixed order hyper network (MOHN). A MOHN implements a function f:{-1,1}^n ->R to arbitrary precision. The structure of a MOHN makes the ways in which input variables interact to determine the function output explicit, which allows human insights and complexity control that are very difficult in neural networks with hidden units. The explicit structure representation also allows efficient algorithms for searching for an input pattern that leads to a desired output. A number of learning rules for estimating the weights based on a sample of data are presented along with a heuristic method for choosing which connections to include in a model. Several methods for searching a MOHN for inputs that lead to a desired output are compared. Experiments compare a MOHN to an MLP on regression tasks. The MOHN is found to achieve a comparable level of accuracy to an MLP but suffers less from local minima in the error function and shows less variance across multiple training trials. It is also easier to interpret and combine from an ensemble. The trade-off between the fit of a model to its training data and that to an independent set of test data is shown to be easier to control in a MOHN than an MLP. A MOHN is also compared to a number of existing optimisation methods including those using estimation of distribution algorithms, genetic algorithms and simulated annealing. The MOHN is able to find optimal solutions in far fewer function evaluations than these methods on tasks selected from the literature

    Incorporating Memory and Learning Mechanisms Into Meta-RaPS

    Get PDF
    Due to the rapid increase of dimensions and complexity of real life problems, it has become more difficult to find optimal solutions using only exact mathematical methods. The need to find near-optimal solutions in an acceptable amount of time is a challenge when developing more sophisticated approaches. A proper answer to this challenge can be through the implementation of metaheuristic approaches. However, a more powerful answer might be reached by incorporating intelligence into metaheuristics. Meta-RaPS (Metaheuristic for Randomized Priority Search) is a metaheuristic that creates high quality solutions for discrete optimization problems. It is proposed that incorporating memory and learning mechanisms into Meta-RaPS, which is currently classified as a memoryless metaheuristic, can help the algorithm produce higher quality results. The proposed Meta-RaPS versions were created by taking different perspectives of learning. The first approach taken is Estimation of Distribution Algorithms (EDA), a stochastic learning technique that creates a probability distribution for each decision variable to generate new solutions. The second Meta-RaPS version was developed by utilizing a machine learning algorithm, Q Learning, which has been successfully applied to optimization problems whose output is a sequence of actions. In the third Meta-RaPS version, Path Relinking (PR) was implemented as a post-optimization method in which the new algorithm learns the good attributes by memorizing best solutions, and follows them to reach better solutions. The fourth proposed version of Meta-RaPS presented another form of learning with its ability to adaptively tune parameters. The efficiency of these approaches motivated us to redesign Meta-RaPS by removing the improvement phase and adding a more sophisticated Path Relinking method. The new Meta-RaPS could solve even the largest problems in much less time while keeping up the quality of its solutions. To evaluate their performance, all introduced versions were tested using the 0-1 Multidimensional Knapsack Problem (MKP). After comparing the proposed algorithms, Meta-RaPS PR and Meta-RaPS Q Learning appeared to be the algorithms with the best and worst performance, respectively. On the other hand, they could all show superior performance than other approaches to the 0-1 MKP in the literature

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science.https://digitalcommons.unomaha.edu/isqafacbooks/1000/thumbnail.jp

    Innovative hybrid MOEA/AD variants for solving multi-objective combinatorial optimization problems

    Get PDF
    Orientador : Aurora Trinidad Ramirez PozoCoorientador : Roberto SantanaTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa: Curitiba, 16/12/2016Inclui referências : f. 103-116Resumo: Muitos problemas do mundo real podem ser representados como um problema de otimização combinatória. Muitas vezes, estes problemas são caracterizados pelo grande número de variáveis e pela presença de múltiplos objetivos a serem otimizados ao mesmo tempo. Muitas vezes estes problemas são difíceis de serem resolvidos de forma ótima. Suas resoluções tem sido considerada um desafio nas últimas décadas. Os algoritimos metaheurísticos visam encontrar uma aproximação aceitável do ótimo em um tempo computacional razoável. Os algoritmos metaheurísticos continuam sendo um foco de pesquisa científica, recebendo uma atenção crescente pela comunidade. Uma das têndencias neste cenário é a arbordagem híbrida, na qual diferentes métodos e conceitos são combinados objetivando propor metaheurísticas mais eficientes. Nesta tese, nós propomos algoritmos metaheurísticos híbridos para a solução de problemas combinatoriais multiobjetivo. Os principais ingredientes das nossas propostas são: (i) o algoritmo evolutivo multiobjetivo baseado em decomposição (MOEA/D framework), (ii) a otimização por colônias de formigas e (iii) e os algoritmos de estimação de distribuição. Em nossos frameworks, além dos operadores genéticos tradicionais, podemos instanciar diferentes modelos como mecanismo de reprodução dos algoritmos. Além disso, nós introduzimos alguns componentes nos frameworks objetivando balancear a convergência e a diversidade durante a busca. Nossos esforços foram direcionados para a resolução de problemas considerados difíceis na literatura. São eles: a programação quadrática binária sem restrições multiobjetivo, o problema de programação flow-shop permutacional multiobjetivo, e também os problemas caracterizados como deceptivos. Por meio de estudos experimentais, mostramos que as abordagens propostas são capazes de superar os resultados do estado-da-arte em grande parte dos casos considerados. Mostramos que as diretrizes do MOEA/D hibridizadas com outras metaheurísticas é uma estratégia promissora para a solução de problemas combinatoriais multiobjetivo. Palavras-chave: metaheuristicas, otimização multiobjetivo, problemas combinatoriais, MOEA/D, otimização por colônia de formigas, algoritmos de estimação de distribuição, programação quadrática binária sem restrições multiobjetivo, problema de programação flow-shop permutacional multiobjetivo, abordagens híbridas.Abstract: Several real-world problems can be stated as a combinatorial optimization problem. Very often, they are characterized by the large number of variables and the presence of multiple conflicting objectives to be optimized at the same time. These kind of problems are, usually, hard to be solved optimally, and their solutions have been considered a challenge for a long time. Metaheuristic algorithms aim at finding an acceptable approximation to the optimal solution in a reasonable computational time. The research on metaheuristics remains an attractive area and receives growing attention. One of the trends in this scenario are the hybrid approaches, in which different methods and concepts are combined aiming to propose more efficient approaches. In this thesis, we have proposed hybrid metaheuristic algorithms for solving multi-objective combinatorial optimization problems. Our proposals are based on (i) the multi-objective evolutionary algorithm based on decomposition (MOEA/D framework), (ii) the bio-inspired metaheuristic ant colony optimization, and (iii) the probabilistic models from the estimation of distribution algorithms. Our algorithms are considered MOEA/D variants. In our MOEA/D variants, besides the traditional genetic operators, we can instantiate different models as the variation step (reproduction). Moreover, we include some design modifications into the frameworks to control the convergence and the diversity during their search (evolution). We have addressed some important problems from the literature, e.g., the multi-objective unconstrained binary quadratic programming, the multiobjective permutation flowshop scheduling problem, and the problems characterized by deception. As a result, we show that our proposed frameworks are able to solve these problems efficiently by outperforming the state-of-the-art approaches in most of the cases considered. We show that the MOEA/D guidelines hybridized to other metaheuristic components and concepts is a powerful strategy for solving multi-objective combinatorial optimization problems. Keywords: meta-heuristics, multi-objective optimization, combinatorial problems, MOEA/D, ant colony optimization, estimation of distribution algorithms, unconstrained binary quadratic programming, permutation flowshop scheduling problem, hybrid approaches

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science
    • …
    corecore