7,414 research outputs found

    Geometry of the Welch Bounds

    Get PDF
    A geometric perspective involving Grammian and frame operators is used to derive the entire family of Welch bounds. This perspective unifies a number of observations that have been made regarding tightness of the bounds and their connections to symmetric k-tensors, tight frames, homogeneous polynomials, and t-designs. In particular. a connection has been drawn between sampling of homogeneous polynomials and frames of symmetric k-tensors. It is also shown that tightness of the bounds requires tight frames. The lack of tight frames in symmetric k-tensors in many cases, however, leads to consideration of sets that come as close as possible to attaining the bounds. The geometric derivation is then extended in the setting of generalized or continuous frames. The Welch bounds for finite sets and countably infinite sets become special cases of this general setting.Comment: changes from previous version include: correction of typos, additional references added, new Example 3.

    The correlation measures of finite sequences: limiting distributions and minimum values

    Full text link
    Three measures of pseudorandomness of finite binary sequences were introduced by Mauduit and S\'ark\"ozy in 1997 and have been studied extensively since then: the normality measure, the well-distribution measure, and the correlation measure of order r. Our main result is that the correlation measure of order r for random binary sequences converges strongly, and so has a limiting distribution. This solves a problem due to Alon, Kohayakawa, Mauduit, Moreira, and R\"odl. We also show that the best known lower bounds for the minimum values of the correlation measures are simple consequences of a celebrated result due to Welch, concerning the maximum nontrivial scalar products over a set of vectors.Comment: 19 pages, this version contains small changes taking into account referee comment

    Asymptotically Locally Optimal Weight Vector Design for a Tighter Correlation Lower Bound of Quasi-Complementary Sequence Sets

    Get PDF
    A quasi-complementary sequence set (QCSS) refers to a set of two-dimensional matrices with low nontrivial aperiodic auto- and cross-correlation sums. For multicarrier code-division multiple-access applications, the availability of large QCSSs with low correlation sums is desirable. The generalized Levenshtein bound (GLB) is a lower bound on the maximum aperiodic correlation sum of QCSSs. The bounding expression of GLB is a fractional quadratic function of a weight vector w and is expressed in terms of three additional parameters associated with QCSS: the set size K, the number of channels M, and the sequence length N. It is known that a tighter GLB (compared to the Welch bound) is possible only if the condition M ≥ 2 and K ≥ K̅ + 1, where K̅ is a certain function of M and N, is satisfied. A challenging research problem is to determine if there exists a weight vector that gives rise to a tighter GLB for all (not just some) K ≥ K̅ + 1 and M ≥ 2, especially for large N, i.e., the condition is asymptotically both necessary and sufficient. To achieve this, we analytically optimize the GLB which is (in general) nonconvex as the numerator term is an indefinite quadratic function of the weight vector. Our key idea is to apply the frequency domain decomposition of the circulant matrix (in the numerator term) to convert the nonconvex problem into a convex one. Following this optimization approach, we derive a new weight vector meeting the aforementioned objective and prove that it is a local minimizer of the GLB under certain conditions
    • …
    corecore