132,322 research outputs found

    Parametrization-free determination of the shape parameters for the pion electromagnetic form factor

    Full text link
    Recent data from high statistics experiments that have measured the modulus of the pion electromagnetic form factor from threshold to relatively high energies are used as input in a suitable mathematical framework of analytic continuation to find stringent constraints on the shape parameters of the form factor at t=0t=0. The method uses also as input a precise description of the phase of the form factor in the elastic region based on Fermi-Watson theorem and the analysis of the ππ\pi\pi scattering amplitude with dispersive Roy equations, and some information on the spacelike region coming from recent high precision experiments. Our analysis confirms the inconsistencies of several data on the modulus, especially from low energies, with analyticity and the input phase, noted in our earlier work. Using the data on the modulus from energies above 0.65GeV0.65 \,{\rm GeV}, we obtain, with no specific parametrization, the prediction for the charge radius. The same formalism leads also to very narrow allowed ranges for the higher-order shape parameters at t=0t=0, with a strong correlation among them.Comment: v2 is 11 pages long using EPJ style files, and has 8 figures; Compared to v1, number of figures has been reduced, discussion has been improved significantly, minor errors have been corrected, references have added, and the manuscript has been significantly revised; this version has been accepted for publication in EPJ

    Central Charge Bounds in 4D Conformal Field Theory

    Full text link
    We derive model-independent lower bounds on the stress tensor central charge C_T in terms of the operator content of a 4-dimensional Conformal Field Theory. More precisely, C_T is bounded from below by a universal function of the dimensions of the lowest and second-lowest scalars present in the CFT. The method uses the crossing symmetry constraint of the 4-point function, analyzed by means of the conformal block decomposition.Comment: 16 pages, 6 figure

    The Conformal Bootstrap: Theory, Numerical Techniques, and Applications

    Full text link
    Conformal field theories have been long known to describe the fascinating universal physics of scale invariant critical points. They describe continuous phase transitions in fluids, magnets, and numerous other materials, while at the same time sit at the heart of our modern understanding of quantum field theory. For decades it has been a dream to study these intricate strongly coupled theories nonperturbatively using symmetries and other consistency conditions. This idea, called the conformal bootstrap, saw some successes in two dimensions but it is only in the last ten years that it has been fully realized in three, four, and other dimensions of interest. This renaissance has been possible both due to significant analytical progress in understanding how to set up the bootstrap equations and the development of numerical techniques for finding or constraining their solutions. These developments have led to a number of groundbreaking results, including world record determinations of critical exponents and correlation function coefficients in the Ising and O(N)O(N) models in three dimensions. This article will review these exciting developments for newcomers to the bootstrap, giving an introduction to conformal field theories and the theory of conformal blocks, describing numerical techniques for the bootstrap based on convex optimization, and summarizing in detail their applications to fixed points in three and four dimensions with no or minimal supersymmetry.Comment: 81 pages, double column, 58 figures; v3: updated references, minor typos correcte

    Separable Concave Optimization Approximately Equals Piecewise-Linear Optimization

    Get PDF
    We study the problem of minimizing a nonnegative separable concave function over a compact feasible set. We approximate this problem to within a factor of 1+epsilon by a piecewise-linear minimization problem over the same feasible set. Our main result is that when the feasible set is a polyhedron, the number of resulting pieces is polynomial in the input size of the polyhedron and linear in 1/epsilon. For many practical concave cost problems, the resulting piecewise-linear cost problem can be formulated as a well-studied discrete optimization problem. As a result, a variety of polynomial-time exact algorithms, approximation algorithms, and polynomial-time heuristics for discrete optimization problems immediately yield fully polynomial-time approximation schemes, approximation algorithms, and polynomial-time heuristics for the corresponding concave cost problems. We illustrate our approach on two problems. For the concave cost multicommodity flow problem, we devise a new heuristic and study its performance using computational experiments. We are able to approximately solve significantly larger test instances than previously possible, and obtain solutions on average within 4.27% of optimality. For the concave cost facility location problem, we obtain a new 1.4991+epsilon approximation algorithm.Comment: Full pape

    Carving Out the Space of 4D CFTs

    Get PDF
    We introduce a new numerical algorithm based on semidefinite programming to efficiently compute bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and N=1 superconformal field theories. Using our algorithm, we dramatically improve previous bounds on a number of CFT quantities, particularly for theories with global symmetries. In the case of SO(4) or SU(2) symmetry, our bounds severely constrain models of conformal technicolor. In N=1 superconformal theories, we place strong bounds on dim(Phi*Phi), where Phi is a chiral operator. These bounds asymptote to the line dim(Phi*Phi) <= 2 dim(Phi) near dim(Phi) ~ 1, forbidding positive anomalous dimensions in this region. We also place novel upper and lower bounds on OPE coefficients of protected operators in the Phi x Phi OPE. Finally, we find examples of lower bounds on central charges and flavor current two-point functions that scale with the size of global symmetry representations. In the case of N=1 theories with an SU(N) flavor symmetry, our bounds on current two-point functions lie within an O(1) factor of the values realized in supersymmetric QCD in the conformal window.Comment: 60 pages, 22 figure

    Bounds for State Degeneracies in 2D Conformal Field Theory

    Full text link
    In this note we explore the application of modular invariance in 2-dimensional CFT to derive universal bounds for quantities describing certain state degeneracies, such as the thermodynamic entropy, or the number of marginal operators. We show that the entropy at inverse temperature 2 pi satisfies a universal lower bound, and we enumerate the principal obstacles to deriving upper bounds on entropies or quantum mechanical degeneracies for fully general CFTs. We then restrict our attention to infrared stable CFT with moderately low central charge, in addition to the usual assumptions of modular invariance, unitarity and discrete operator spectrum. For CFT in the range c_left + c_right < 48 with no relevant operators, we are able to prove an upper bound on the thermodynamic entropy at inverse temperature 2 pi. Under the same conditions we also prove that a CFT can have a number of marginal deformations no greater than ((c_left + c_right) / (48 - c_left - c_right)) e^(4 Pi) - 2.Comment: 23 pages, LaTeX, minor change

    Five dimensional O(N)O(N)-symmetric CFTs from conformal bootstrap

    Full text link
    We investigate the conformal bootstrap approach to O(N)O(N) symmetric CFTs in five dimension with particular emphasis on the lower bound on the current central charge. The bound has a local minimum for all N>1N>1, and in the large NN limit we propose that the minimum is saturated by the critical O(N)O(N) vector model at the UV fixed point, the existence of which has been recently argued by Fei, Giombi, and Klebanov. The location of the minimum is generically different from the minimum of the lower bound of the energy-momentum tensor central charge when it exists for smaller NN. To better understand the situation, we examine the lower bounds of the current central charge of O(N)O(N) symmetric CFTs in three dimension to compare. We find the similar agreement in the large NN limit but the discrepancy for smaller NN with the other sectors of the conformal bootstrap.Comment: 5 pages, 6 figures. v2: minor change

    Solving the 3D Ising Model with the Conformal Bootstrap

    Get PDF
    We study the constraints of crossing symmetry and unitarity in general 3D Conformal Field Theories. In doing so we derive new results for conformal blocks appearing in four-point functions of scalars and present an efficient method for their computation in arbitrary space-time dimension. Comparing the resulting bounds on operator dimensions and OPE coefficients in 3D to known results, we find that the 3D Ising model lies at a corner point on the boundary of the allowed parameter space. We also derive general upper bounds on the dimensions of higher spin operators, relevant in the context of theories with weakly broken higher spin symmetries.Comment: 32 pages, 11 figures; v2: refs added, small changes in Section 5.3, Fig. 7 replaced; v3: ref added, fits redone in Section 5.
    corecore