8,774 research outputs found

    New results on metric-locating-dominating sets of graphs

    Get PDF
    A dominating set SS of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of SS, and the minimum cardinality of such a set is called the metric-location-domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize classes of trees according to certain relationships between their metric-location-domination number and their metric dimension and domination number. Then, we show different methods to transform metric-locating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them involving parameters that have not been related so far.Comment: 13 pages, 3 figure

    New results on metric-locating-dominating sets of graphs

    Get PDF
    A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distanc es from the elements of S , and the minimum cardinality of such a set is called the metri c-location- domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominatin g sets to other special sets: resolving sets, dominating sets, locating-dominating set s and doubly resolving sets. We first characterize classes of trees according to cer tain relationships between their metric-location-domination number and thei r metric dimension and domination number. Then, we show different methods to tran sform metric- locating-dominating sets into locating-dominating sets a nd doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them involving parameters that have not been related so farPostprint (published version

    Locating-Domination in Complementary Prisms.

    Get PDF
    Let G = (V (G), E(G)) be a graph and G̅ be the complement of G. The complementary prism of G, denoted GG̅, is the graph formed from the disjoint union of G and G̅ by adding the edges of a perfect matching between the corresponding vertices of G and G̅. A set D ⊆ V (G) is a locating-dominating set of G if for every u ∈ V (G)D, its neighborhood N(u)⋂D is nonempty and distinct from N(v)⋂D for all v ∈ V (G)D where v ≠ u. The locating-domination number of G is the minimum cardinality of a locating-dominating set of G. In this thesis, we study the locating-domination number of complementary prisms. We determine the locating-domination number of GG̅ for specific graphs and characterize the complementary prisms with small locating-domination numbers. We also present bounds on the locating-domination numbers of complementary prisms

    Solving Two Conjectures regarding Codes for Location in Circulant Graphs

    Full text link
    Identifying and locating-dominating codes have been widely studied in circulant graphs of type Cn(1,2,…,r)C_n(1,2, \ldots, r), which can also be viewed as power graphs of cycles. Recently, Ghebleh and Niepel (2013) considered identification and location-domination in the circulant graphs Cn(1,3)C_n(1,3). They showed that the smallest cardinality of a locating-dominating code in Cn(1,3)C_n(1,3) is at least ⌈n/3⌉\lceil n/3 \rceil and at most ⌈n/3⌉+1\lceil n/3 \rceil + 1 for all n≥9n \geq 9. Moreover, they proved that the lower bound is strict when n≡0,1,4(mod6)n \equiv 0, 1, 4 \pmod{6} and conjectured that the lower bound can be increased by one for other nn. In this paper, we prove their conjecture. Similarly, they showed that the smallest cardinality of an identifying code in Cn(1,3)C_n(1,3) is at least ⌈4n/11⌉\lceil 4n/11 \rceil and at most ⌈4n/11⌉+1\lceil 4n/11 \rceil + 1 for all n≥11n \geq 11. Furthermore, they proved that the lower bound is attained for most of the lengths nn and conjectured that in the rest of the cases the lower bound can improved by one. This conjecture is also proved in the paper. The proofs of the conjectures are based on a novel approach which, instead of making use of the local properties of the graphs as is usual to identification and location-domination, also manages to take advantage of the global properties of the codes and the underlying graphs

    Metric-locating-dominating sets of graphs for constructing related subsets of vertices

    Get PDF
    © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of S , and the minimum cardinality of such a set is called the metric-location-domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize the extremal trees of the bounds that naturally involve metric-location-domination number, metric dimension and domination number. Then, we prove that there is no polynomial upper bound on the location-domination number in terms of the metric-location-domination number, thus extending a result of Henning and Oellermann. Finally, we show different methods to transform metric-locating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them concerning parameters that have not been related so farPeer ReviewedPostprint (author's final draft

    Resolving sets for breaking symmetries of graphs

    Full text link
    This paper deals with the maximum value of the difference between the determining number and the metric dimension of a graph as a function of its order. Our technique requires to use locating-dominating sets, and perform an independent study on other functions related to these sets. Thus, we obtain lower and upper bounds on all these functions by means of very diverse tools. Among them are some adequate constructions of graphs, a variant of a classical result in graph domination and a polynomial time algorithm that produces both distinguishing sets and determining sets. Further, we consider specific families of graphs where the restrictions of these functions can be computed. To this end, we utilize two well-known objects in graph theory: kk-dominating sets and matchings.Comment: 24 pages, 12 figure

    The difference between the metric dimension and the determining number of a graph

    Get PDF
    We study the maximum value of the difference between the metric dimension and the determining number of a graph as a function of its order. We develop a technique that uses functions related to locating-dominating sets to obtain lower and upper bounds on that maximum, and exact computations when restricting to some specific families of graphs. Our approach requires very diverse tools and connections with well-known objects in graph theory; among them: a classical result in graph domination by Ore, a Ramsey-type result by Erdős and Szekeres, a polynomial time algorithm to compute distinguishing sets and determining sets of twin-free graphs, k-dominating sets, and matchings

    Locating-dominating sets in twin-free graphs

    Full text link
    A locating-dominating set of a graph GG is a dominating set DD of GG with the additional property that every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)∩D≠N(v)∩DN(u) \cap D \ne N(v) \cap D where N(u)N(u) denotes the open neighborhood of uu. A graph is twin-free if every two distinct vertices have distinct open and closed neighborhoods. The location-domination number of GG, denoted γL(G)\gamma_L(G), is the minimum cardinality of a locating-dominating set in GG. It is conjectured [D. Garijo, A. Gonz\'alez and A. M\'arquez. The difference between the metric dimension and the determining number of a graph. Applied Mathematics and Computation 249 (2014), 487--501] that if GG is a twin-free graph of order nn without isolated vertices, then γL(G)≤n2\gamma_L(G)\le \frac{n}{2}. We prove the general bound γL(G)≤2n3\gamma_L(G)\le \frac{2n}{3}, slightly improving over the ⌊2n3⌋+1\lfloor\frac{2n}{3}\rfloor+1 bound of Garijo et al. We then provide constructions of graphs reaching the n2\frac{n}{2} bound, showing that if the conjecture is true, the family of extremal graphs is a very rich one. Moreover, we characterize the trees GG that are extremal for this bound. We finally prove the conjecture for split graphs and co-bipartite graphs.Comment: 11 pages; 4 figure
    • …
    corecore