50,189 research outputs found

    On Completeness of Groups of Diffeomorphisms

    Get PDF
    We study completeness properties of the Sobolev diffeomorphism groups Ds(M)\mathcal D^s(M) endowed with strong right-invariant Riemannian metrics when the underlying manifold MM is Rd\mathbb R^d or compact without boundary. The main result is that for s>dim⁥M/2+1s > \dim M/2 + 1, the group Ds(M)\mathcal D^s(M) is geodesically and metrically complete with a surjective exponential map. We then present the connection between the Sobolev diffeomorphism group and the large deformation matching framework in order to apply our results to diffeomorphic image matching.Comment: 43 pages, revised versio

    Collapsibility of CAT(0) spaces

    Full text link
    Collapsibility is a combinatorial strengthening of contractibility. We relate this property to metric geometry by proving the collapsibility of any complex that is CAT(0) with a metric for which all vertex stars are convex. This strengthens and generalizes a result by Crowley. Further consequences of our work are: (1) All CAT(0) cube complexes are collapsible. (2) Any triangulated manifold admits a CAT(0) metric if and only if it admits collapsible triangulations. (3) All contractible d-manifolds (d≠4d \ne 4) admit collapsible CAT(0) triangulations. This discretizes a classical result by Ancel--Guilbault.Comment: 27 pages, 3 figures. The part on collapsibility of convex complexes has been removed and forms a new paper, called "Barycentric subdivisions of convexes complex are collapsible" (arXiv:1709.07930). The part on enumeration of manifolds has also been removed and forms now a third paper, called "A Cheeger-type exponential bound for the number of triangulated manifolds" (arXiv:1710.00130

    Invariant higher-order variational problems II

    Full text link
    Motivated by applications in computational anatomy, we consider a second-order problem in the calculus of variations on object manifolds that are acted upon by Lie groups of smooth invertible transformations. This problem leads to solution curves known as Riemannian cubics on object manifolds that are endowed with normal metrics. The prime examples of such object manifolds are the symmetric spaces. We characterize the class of cubics on object manifolds that can be lifted horizontally to cubics on the group of transformations. Conversely, we show that certain types of non-horizontal geodesics on the group of transformations project to cubics. Finally, we apply second-order Lagrange--Poincar\'e reduction to the problem of Riemannian cubics on the group of transformations. This leads to a reduced form of the equations that reveals the obstruction for the projection of a cubic on a transformation group to again be a cubic on its object manifold.Comment: 40 pages, 1 figure. First version -- comments welcome
    • 

    corecore