455 research outputs found

    Property-preserving subnet reductions for designing manufacturing systems with shared resources

    Get PDF
    AbstractThis paper handles two problems in manufacturing system design: resource sharing and system abstraction. In a manufacturing system, resources such as robots, machines, etc. are shared by several processes. When the resources are switched from one process to another, they may need some modifications such as cleaning oil, adding equipments and so on. Previous designing methods assume that the resources have no intermediate modifications. Hence, they need to be extended to handle such kinds of resource-sharing problems. As for abstraction, modeling operations with single places in manufacturing system design is very popular. From the viewpoint of verification, the objective is to verify whether the reduced model has the same desirable properties as the original one. This paper presents three kinds of property-preserving subnet reduction methods. For each reduction method, conditions are presented for ensuring that the properties liveness, boundedness and reversibility are preserved. Applications of these reduction methods to handling the above resource sharing and system abstraction problems are illustrated with an example from the manufacturing system

    Soundness-preserving composition of synchronously and asynchronously interacting workflow net components

    Full text link
    In this paper, we propose a compositional approach to construct formal models of complex distributed systems with several synchronously and asynchronously interacting components. A system model is obtained from a composition of individual component models according to requirements on their interaction. We represent component behavior using workflow nets - a class of Petri nets. We propose a general approach to model and compose synchronously and asynchronously interacting workflow nets. Through the use of Petri net morphisms and their properties, we prove that this composition of workflow nets preserves component correctness.Comment: Preprint of the paper submitted to "Fundamenta Informaticae

    Petri net modules in the transformation-based component framework

    Get PDF
    AbstractComponent-based software engineering needs to be backed by thorough formal concepts and modeling techniques. This paper combines two concepts introduced independently by the two authors in previous papers. On one hand, the concept of Petri net modules introduced at IDPT 2002 in Padberg [J. Padberg, Petri net modules, Journal on Integrated Design and Process Technology 6 (4) (2002) 105–120], and on the other hand a generic component framework for system modeling introduced at FASE 2002 in Ehrig et al. [H. Ehrig, F. Orejas, B. Braatz, M. Klein, M. Piirainen, A generic component concept for system modeling, in: Proceedings of FASE ’02, Lecture Notes in Computer Science, vol. 2306, Springer, 2002]. First we develop a categorical formalization of the transformation based approach to components that is based on pushouts. This is the frame in which we show that Petri net modules can be considered as an instantiation of the generic component framework. This allows applying the transformation based semantics and compositionality result of the generic framework to Petri net modules. In addition to general Petri net modules we introduce Petri net modules preserving safety properties which can be considered as another instantiation of pushout based formalization of the generic framework

    Service substitution : a behavioral approach based on Petri Nets

    Get PDF
    Service-Oriented Computing is an emerging computing paradigm that supports the modular design of (software) systems. Complex systems are designed by composing less complex systems, called services. Such a (complex) system is a distributed application often involving several cooperating enterprises. As a system usually changes over time, individual services will be substituted by other services. Substituting one service by another one should not affect the correctness of the overall system. Assuring correctness becomes particularly challenging, as the services rely on each other, and each of the involved enterprises only oversees a part of the overall system. In addition, services communicate asynchronously which makes the analysis even more difficult. For this reason, formal methods to support service substitution are indispensable. In this thesis, we study service substitution at the level of service models. Thereby we restrict ourselves to service behavior. As a formalism to model service behavior, we use Petri nets. The first contribution of this thesis is the definition of several substitutability criteria that are suitable in the context of Service-Oriented Computing. Substituting a service S by a service S0 should preserve some behavioral properties of the overall system. For each set of behavioral properties and a given service S, there exists a set of behaviorally compatible services for S. A substitutability criterion defines which of these behaviorally compatible services of S have to be preserved by S0. We relate our substitutability criteria to preorders and equivalences known from process theory. The second contribution of this thesis is to present, for each substitutability criterion, a procedure to decide whether a service S0 can substitute a service S. The decision requires the comparison of the in general infinite sets of behaviorally compatible services for the services S and S0. Hence, we extend existing work on an abstract representation of all behaviorally compatible services for a given service. For each notion of behavioral compatibility, we present an algorithmic solution to represent all behaviorally compatible services. Based on these representations, we can decide substitutability of a service S by a service S0. The third contribution of this thesis is a method to support the design of a service S0 that can substitute a service S according to a substitutability criterion. Our approach is to derive a service S0 from the service S by stepwise transformation. To this end, we present several transformation rules. Finally, we formalize and we extend the equivalence notion for services specified in the language WS-BPEL. That way, we demonstrate the applicability of our work

    A model driven approach to analysis and synthesis of sequence diagrams

    Get PDF
    Software design is a vital phase in a software development life cycle as it creates a blueprint for the implementation of the software. It is crucial that software designs are error-free since any unresolved design-errors could lead to costly implementation errors. To minimize these errors, the software community adopted the concept of modelling from various other engineering disciplines. Modelling provides a platform to create and share abstract or conceptual representations of the software system – leading to various modelling languages, among them Unified Modelling Language (UML) and Petri Nets. While Petri Nets strong mathematical capability allows various formal analyses to be performed on the models, UMLs user-friendly nature presented a more appealing platform for system designers. Using Multi Paradigm Modelling, this thesis presents an approach where system designers may have the best of both worlds; SD2PN, a model transformation that maps UML Sequence Diagrams into Petri Nets allows system designers to perform modelling in UML while still using Petri Nets to perform the analysis. Multi Paradigm Modelling also provided a platform for a well-established theory in Petri Nets – synthesis to be adopted into Sequence Diagram as a method of putting-together different Sequence Diagrams based on a set of techniques and algorithms

    Feature Nets: behavioural modelling of software product lines

    Get PDF
    Software product lines (SPL) are diverse systems that are developed using a dual engineering process: (a)family engineering defines the commonality and variability among all members of the SPL, and (b) application engineering derives specific products based on the common foundation combined with a variable selection of features. The number of derivable products in an SPL can thus be exponential in the number of features. This inherent complexity poses two main challenges when it comes to modelling: Firstly, the formalism used for modelling SPLs needs to be modular and scalable. Secondly, it should ensure that all products behave correctly by providing the ability to analyse and verify complex models efficiently. In this paper we propose to integrate an established modelling formalism (Petri nets) with the domain of software product line engineering. To this end we extend Petri nets to Feature Nets. While Petri nets provide a framework for formally modelling and verifying single software systems, Feature Nets offer the same sort of benefits for software product lines. We show how SPLs can be modelled in an incremental, modular fashion using Feature Nets, provide a Feature Nets variant that supports modelling dynamic SPLs, and propose an analysis method for SPL modelled as Feature Nets. By facilitating the construction of a single model that includes the various behaviours exhibited by the products in an SPL, we make a significant step towards efficient and practical quality assurance methods for software product lines

    Obstructions in Security-Aware Business Processes

    Get PDF
    This Open Access book explores the dilemma-like stalemate between security and regulatory compliance in business processes on the one hand and business continuity and governance on the other. The growing number of regulations, e.g., on information security, data protection, or privacy, implemented in increasingly digitized businesses can have an obstructive effect on the automated execution of business processes. Such security-related obstructions can particularly occur when an access control-based implementation of regulations blocks the execution of business processes. By handling obstructions, security in business processes is supposed to be improved. For this, the book presents a framework that allows the comprehensive analysis, detection, and handling of obstructions in a security-sensitive way. Thereby, methods based on common organizational security policies, process models, and logs are proposed. The Petri net-based modeling and related semantic and language-based research, as well as the analysis of event data and machine learning methods finally lead to the development of algorithms and experiments that can detect and resolve obstructions and are reproducible with the provided software

    Compositional synthesis of distributed system components based on augmented marked graphs

    Get PDF
    Augmented marked graphs possess a special structure for modelling common resources as well as some desirable properties pertaining to liveness, boundedness, reversibility and conservativeness. This paper investigates the property-preserving composition of augmented marked graphs for the synthesis of distributed systems. It is proposed that distributed system components are specified as augmented marked graphs. An integrated system is obtained by composing these augmented marked graphs via their common resource places. Based on preservation of properties, liveness, boundedness, reversibility and conservativeness of the system can be readily derived. This contributes to resolve the problem of ensuring design correctness in the composition of distributed system components.Facultad de Informátic

    Compositional construction and analysis of Petri net systems

    Get PDF

    A class of Petri nets for modeling and analyzing business processes

    Get PDF
    corecore