94 research outputs found

    New Approaches for Speech Enhancement in the Short-Time Fourier Transform Domain

    Get PDF
    Speech enhancement aims at the improvement of speech quality by using various algorithms. A speech enhancement technique can be implemented as either a time domain or a transform domain method. In the transform domain speech enhancement, the spectrum of clean speech signal is estimated through the modification of noisy speech spectrum and then it is used to obtain the enhanced speech signal in the time domain. Among the existing transform domain methods in the literature, the short-time Fourier transform (STFT) processing has particularly served as the basis to implement most of the frequency domain methods. In general, speech enhancement methods in the STFT domain can be categorized into the estimators of complex discrete Fourier transform (DFT) coefficients and the estimators of real-valued short-time spectral amplitude (STSA). Due to the computational efficiency of the STSA estimation method and also its superior performance in most cases, as compared to the estimators of complex DFT coefficients, we focus mostly on the estimation of speech STSA throughout this work and aim at developing algorithms for noise reduction and reverberation suppression. First, we tackle the problem of additive noise reduction using the single-channel Bayesian STSA estimation method. In this respect, we present new schemes for the selection of Bayesian cost function parameters for a parametric STSA estimator, namely the W�-SA estimator, based on an initial estimate of the speech and also the properties of human auditory system. We further use the latter information to design an efficient flooring scheme for the gain function of the STSA estimator. Next, we apply the generalized Gaussian distribution (GGD) to theW�-SA estimator as the speech STSA prior and propose to choose its parameters according to noise spectral variance and a priori signal to noise ratio (SNR). The suggested STSA estimation schemes are able to provide further noise reduction as well as less speech distortion, as compared to the previous methods. Quality and noise reduction performance evaluations indicated the superiority of the proposed speech STSA estimation with respect to the previous estimators. Regarding the multi-channel counterpart of the STSA estimation method, first we generalize the proposed single-channel W�-SA estimator to the multi-channel case for spatially uncorrelated noise. It is shown that under the Bayesian framework, a straightforward extension from the single-channel to the multi-channel case can be performed by generalizing the STSA estimator parameters, i.e. � and �. Next, we develop Bayesian STSA estimators by taking advantage of speech spectral phase rather than only relying on the spectral amplitude of observations, in contrast to conventional methods. This contribution is presented for the multi-channel scenario with single-channel as a special case. Next, we aim at developing multi-channel STSA estimation under spatially correlated noise and derive a generic structure for the extension of a single-channel estimator to its multi-channel counterpart. It is shown that the derived multi-channel extension requires a proper estimate of the spatial correlation matrix of noise. Subsequently, we focus on the estimation of noise correlation matrix, that is not only important in the multi-channel STSA estimation scheme but also highly useful in different beamforming methods. Next, we aim at speech reverberation suppression in the STFT domain using the weighted prediction error (WPE) method. The original WPE method requires an estimate of the desired speech spectral variance along with reverberation prediction weights, leading to a sub-optimal strategy that alternatively estimates each of these two quantities. Also, similar to most other STFT based speech enhancement methods, the desired speech coefficients are assumed to be temporally independent, while this assumption is inaccurate. Taking these into account, first, we employ a suitable estimator for the speech spectral variance and integrate it into the estimation of the reverberation prediction weights. In addition to the performance advantage with respect to the previous versions of the WPE method, the presented approach provides a good reduction in implementation complexity. Next, we take into account the temporal correlation present in the STFT of the desired speech, namely the inter-frame correlation (IFC), and consider an approximate model where only the frames within each segment of speech are considered as correlated. Furthermore, an efficient method for the estimation of the underlying IFC matrix is developed based on the extension of the speech variance estimator proposed previously. The performance results reveal lower residual reverberation and higher overall quality provided by the proposed method. Finally, we focus on the problem of late reverberation suppression using the classic speech spectral enhancement method originally developed for additive noise reduction. As our main contribution, we propose a novel late reverberant spectral variance (LRSV) estimator which replaces the noise spectral variance in order to modify the gain function for reverberation suppression. The suggested approach employs a modified version of the WPE method in a model based smoothing scheme used for the estimation of the LRSV. According to the experiments, the proposed LRSV estimator outperforms the previous major methods considerably and scores the closest results to the theoretically true LRSV estimator. Particularly, in case of changing room impulse responses (RIRs) where other methods cannot follow the true LRSV estimator accurately, the suggested estimator is able to track true LRSV values and results in a smaller tracking error. We also target a few other aspects of the spectral enhancement method for reverberation suppression, which were explored before only for the purpose of noise reduction. These contributions include the estimation of signal to reverberant ratio (SRR) and the development of new schemes for the speech presence probability (SPP) and spectral gain flooring in the context of late reverberation suppression

    Structure Learning in Audio

    Get PDF

    Speech Enhancement Exploiting the Source-Filter Model

    Get PDF
    Imagining everyday life without mobile telephony is nowadays hardly possible. Calls are being made in every thinkable situation and environment. Hence, the microphone will not only pick up the user’s speech but also sound from the surroundings which is likely to impede the understanding of the conversational partner. Modern speech enhancement systems are able to mitigate such effects and most users are not even aware of their existence. In this thesis the development of a modern single-channel speech enhancement approach is presented, which uses the divide and conquer principle to combat environmental noise in microphone signals. Though initially motivated by mobile telephony applications, this approach can be applied whenever speech is to be retrieved from a corrupted signal. The approach uses the so-called source-filter model to divide the problem into two subproblems which are then subsequently conquered by enhancing the source (the excitation signal) and the filter (the spectral envelope) separately. Both enhanced signals are then used to denoise the corrupted signal. The estimation of spectral envelopes has quite some history and some approaches already exist for speech enhancement. However, they typically neglect the excitation signal which leads to the inability of enhancing the fine structure properly. Both individual enhancement approaches exploit benefits of the cepstral domain which offers, e.g., advantageous mathematical properties and straightforward synthesis of excitation-like signals. We investigate traditional model-based schemes like Gaussian mixture models (GMMs), classical signal processing-based, as well as modern deep neural network (DNN)-based approaches in this thesis. The enhanced signals are not used directly to enhance the corrupted signal (e.g., to synthesize a clean speech signal) but as so-called a priori signal-to-noise ratio (SNR) estimate in a traditional statistical speech enhancement system. Such a traditional system consists of a noise power estimator, an a priori SNR estimator, and a spectral weighting rule that is usually driven by the results of the aforementioned estimators and subsequently employed to retrieve the clean speech estimate from the noisy observation. As a result the new approach obtains significantly higher noise attenuation compared to current state-of-the-art systems while maintaining a quite comparable speech component quality and speech intelligibility. In consequence, the overall quality of the enhanced speech signal turns out to be superior as compared to state-of-the-art speech ehnahcement approaches.Mobiltelefonie ist aus dem heutigen Leben nicht mehr wegzudenken. Telefonate werden in beliebigen Situationen an beliebigen Orten geführt und dabei nimmt das Mikrofon nicht nur die Sprache des Nutzers auf, sondern auch die Umgebungsgeräusche, welche das Verständnis des Gesprächspartners stark beeinflussen können. Moderne Systeme können durch Sprachverbesserungsalgorithmen solchen Effekten entgegenwirken, dabei ist vielen Nutzern nicht einmal bewusst, dass diese Algorithmen existieren. In dieser Arbeit wird die Entwicklung eines einkanaligen Sprachverbesserungssystems vorgestellt. Der Ansatz setzt auf das Teile-und-herrsche-Verfahren, um störende Umgebungsgeräusche aus Mikrofonsignalen herauszufiltern. Dieses Verfahren kann für sämtliche Fälle angewendet werden, in denen Sprache aus verrauschten Signalen extrahiert werden soll. Der Ansatz nutzt das Quelle-Filter-Modell, um das ursprüngliche Problem in zwei Unterprobleme aufzuteilen, die anschließend gelöst werden, indem die Quelle (das Anregungssignal) und das Filter (die spektrale Einhüllende) separat verbessert werden. Die verbesserten Signale werden gemeinsam genutzt, um das gestörte Mikrofonsignal zu entrauschen. Die Schätzung von spektralen Einhüllenden wurde bereits in der Vergangenheit erforscht und zum Teil auch für die Sprachverbesserung angewandt. Typischerweise wird dabei jedoch das Anregungssignal vernachlässigt, so dass die spektrale Feinstruktur des Mikrofonsignals nicht verbessert werden kann. Beide Ansätze nutzen jeweils die Eigenschaften der cepstralen Domäne, die unter anderem vorteilhafte mathematische Eigenschaften mit sich bringen, sowie die Möglichkeit, Prototypen eines Anregungssignals zu erzeugen. Wir untersuchen modellbasierte Ansätze, wie z.B. Gaußsche Mischmodelle, klassische signalverarbeitungsbasierte Lösungen und auch moderne tiefe neuronale Netzwerke in dieser Arbeit. Die so verbesserten Signale werden nicht direkt zur Sprachsignalverbesserung genutzt (z.B. Sprachsynthese), sondern als sogenannter A-priori-Signal-zu-Rauschleistungs-Schätzwert in einem traditionellen statistischen Sprachverbesserungssystem. Dieses besteht aus einem Störleistungs-Schätzer, einem A-priori-Signal-zu-Rauschleistungs-Schätzer und einer spektralen Gewichtungsregel, die üblicherweise mit Hilfe der Ergebnisse der beiden Schätzer berechnet wird. Schließlich wird eine Schätzung des sauberen Sprachsignals aus der Mikrofonaufnahme gewonnen. Der neue Ansatz bietet eine signifikant höhere Dämpfung des Störgeräuschs als der bisherige Stand der Technik. Dabei wird eine vergleichbare Qualität der Sprachkomponente und der Sprachverständlichkeit gewährleistet. Somit konnte die Gesamtqualität des verbesserten Sprachsignals gegenüber dem Stand der Technik erhöht werden

    Model-based speech enhancement for hearing aids

    Get PDF

    Approches tomographiques structurelles pour l'analyse du milieu urbain par tomographie SAR THR : TomoSAR

    No full text
    SAR tomography consists in exploiting multiple images from the same area acquired from a slightly different angle to retrieve the 3-D distribution of the complex reflectivity on the ground. As the transmitted waves are coherent, the desired spatial information (along with the vertical axis) is coded in the phase of the pixels. Many methods have been proposed to retrieve this information in the past years. However, the natural redundancies of the scene are generally not exploited to improve the tomographic estimation step. This Ph.D. presents new approaches to regularize the estimated reflectivity density obtained through SAR tomography by exploiting the urban geometrical structures.La tomographie SAR exploite plusieurs acquisitions d'une même zone acquises d'un point de vue légerement différent pour reconstruire la densité complexe de réflectivité au sol. Cette technique d'imagerie s'appuyant sur l'émission et la réception d'ondes électromagnétiques cohérentes, les données analysées sont complexes et l'information spatiale manquante (selon la verticale) est codée dans la phase. De nombreuse méthodes ont pu être proposées pour retrouver cette information. L'utilisation des redondances naturelles à certains milieux n'est toutefois généralement pas exploitée pour améliorer l'estimation tomographique. Cette thèse propose d'utiliser l'information structurelle propre aux structures urbaines pour régulariser les densités de réflecteurs obtenues par cette technique

    Single-Microphone Speech Enhancement and Separation Using Deep Learning

    Get PDF
    The cocktail party problem comprises the challenging task of understanding a speech signal in a complex acoustic environment, where multiple speakers and background noise signals simultaneously interfere with the speech signal of interest. A signal processing algorithm that can effectively increase the speech intelligibility and quality of speech signals in such complicated acoustic situations is highly desirable. Especially for applications involving mobile communication devices and hearing assistive devices. Due to the re-emergence of machine learning techniques, today, known as deep learning, the challenges involved with such algorithms might be overcome. In this PhD thesis, we study and develop deep learning-based techniques for two sub-disciplines of the cocktail party problem: single-microphone speech enhancement and single-microphone multi-talker speech separation. Specifically, we conduct in-depth empirical analysis of the generalizability capability of modern deep learning-based single-microphone speech enhancement algorithms. We show that performance of such algorithms is closely linked to the training data, and good generalizability can be achieved with carefully designed training data. Furthermore, we propose uPIT, a deep learning-based algorithm for single-microphone speech separation and we report state-of-the-art results on a speaker-independent multi-talker speech separation task. Additionally, we show that uPIT works well for joint speech separation and enhancement without explicit prior knowledge about the noise type or number of speakers. Finally, we show that deep learning-based speech enhancement algorithms designed to minimize the classical short-time spectral amplitude mean squared error leads to enhanced speech signals which are essentially optimal in terms of STOI, a state-of-the-art speech intelligibility estimator.Comment: PhD Thesis. 233 page

    Single-Microphone Speech Enhancement and Separation Using Deep Learning

    Get PDF

    New Stategies for Single-channel Speech Separation

    Get PDF
    corecore