6,490 research outputs found

    The Dynamics of Group Codes: Dual Abelian Group Codes and Systems

    Full text link
    Fundamental results concerning the dynamics of abelian group codes (behaviors) and their duals are developed. Duals of sequence spaces over locally compact abelian groups may be defined via Pontryagin duality; dual group codes are orthogonal subgroups of dual sequence spaces. The dual of a complete code or system is finite, and the dual of a Laurent code or system is (anti-)Laurent. If C and C^\perp are dual codes, then the state spaces of C act as the character groups of the state spaces of C^\perp. The controllability properties of C are the observability properties of C^\perp. In particular, C is (strongly) controllable if and only if C^\perp is (strongly) observable, and the controller memory of C is the observer memory of C^\perp. The controller granules of C act as the character groups of the observer granules of C^\perp. Examples of minimal observer-form encoder and syndrome-former constructions are given. Finally, every observer granule of C is an "end-around" controller granule of C.Comment: 30 pages, 11 figures. To appear in IEEE Trans. Inform. Theory, 200

    Automorphism groups of Grassmann codes

    Full text link
    We use a theorem of Chow (1949) on line-preserving bijections of Grassmannians to determine the automorphism group of Grassmann codes. Further, we analyze the automorphisms of the big cell of a Grassmannian and then use it to settle an open question of Beelen et al. (2010) concerning the permutation automorphism groups of affine Grassmann codes. Finally, we prove an analogue of Chow's theorem for the case of Schubert divisors in Grassmannians and then use it to determine the automorphism group of linear codes associated to such Schubert divisors. In the course of this work, we also give an alternative short proof of MacWilliams theorem concerning the equivalence of linear codes and a characterization of maximal linear subspaces of Schubert divisors in Grassmannians.Comment: revised versio

    On Protected Realizations of Quantum Information

    Full text link
    There are two complementary approaches to realizing quantum information so that it is protected from a given set of error operators. Both involve encoding information by means of subsystems. One is initialization-based error protection, which involves a quantum operation that is applied before error events occur. The other is operator quantum error correction, which uses a recovery operation applied after the errors. Together, the two approaches make it clear how quantum information can be stored at all stages of a process involving alternating error and quantum operations. In particular, there is always a subsystem that faithfully represents the desired quantum information. We give a definition of faithful realization of quantum information and show that it always involves subsystems. This justifies the "subsystems principle" for realizing quantum information. In the presence of errors, one can make use of noiseless, (initialization) protectable, or error-correcting subsystems. We give an explicit algorithm for finding optimal noiseless subsystems. Finding optimal protectable or error-correcting subsystems is in general difficult. Verifying that a subsystem is error-correcting involves only linear algebra. We discuss the verification problem for protectable subsystems and reduce it to a simpler version of the problem of finding error-detecting codes.Comment: 17 page
    corecore