505 research outputs found

    Nonlinear Preconditioning: How to use a Nonlinear Schwarz Method to Precondition Newton's Method

    Get PDF
    For linear problems, domain decomposition methods can be used directly as iterative solvers, but also as preconditioners for Krylov methods. In practice, Krylov acceleration is almost always used, since the Krylov method finds a much better residual polynomial than the stationary iteration, and thus converges much faster. We show in this paper that also for non-linear problems, domain decomposition methods can either be used directly as iterative solvers, or one can use them as preconditioners for Newton's method. For the concrete case of the parallel Schwarz method, we show that we obtain a preconditioner we call RASPEN (Restricted Additive Schwarz Preconditioned Exact Newton) which is similar to ASPIN (Additive Schwarz Preconditioned Inexact Newton), but with all components directly defined by the iterative method. This has the advantage that RASPEN already converges when used as an iterative solver, in contrast to ASPIN, and we thus get a substantially better preconditioner for Newton's method. The iterative construction also allows us to naturally define a coarse correction using the multigrid full approximation scheme, which leads to a convergent two level non-linear iterative domain decomposition method and a two level RASPEN non-linear preconditioner. We illustrate our findings with numerical results on the Forchheimer equation and a non-linear diffusion problem

    The Vanishing Moment Method for Fully Nonlinear Second Order Partial Differential Equations: Formulation, Theory, and Numerical Analysis

    Full text link
    The vanishing moment method was introduced by the authors in [37] as a reliable methodology for computing viscosity solutions of fully nonlinear second order partial differential equations (PDEs), in particular, using Galerkin-type numerical methods such as finite element methods, spectral methods, and discontinuous Galerkin methods, a task which has not been practicable in the past. The crux of the vanishing moment method is the simple idea of approximating a fully nonlinear second order PDE by a family (parametrized by a small parameter \vepsi) of quasilinear higher order (in particular, fourth order) PDEs. The primary objectives of this book are to present a detailed convergent analysis for the method in the radial symmetric case and to carry out a comprehensive finite element numerical analysis for the vanishing moment equations (i.e., the regularized fourth order PDEs). Abstract methodological and convergence analysis frameworks of conforming finite element methods and mixed finite element methods are first developed for fully nonlinear second order PDEs in general settings. The abstract frameworks are then applied to three prototypical nonlinear equations, namely, the Monge-Amp\`ere equation, the equation of prescribed Gauss curvature, and the infinity-Laplacian equation. Numerical experiments are also presented for each problem to validate the theoretical error estimate results and to gauge the efficiency of the proposed numerical methods and the vanishing moment methodology.Comment: 141 pages, 16 figure

    A parallel four step domain decomposition scheme for coupled forward–backward stochastic differential equations

    Get PDF
    AbstractMotivated by the idea of imposing paralleling computing on solving stochastic differential equations (SDEs), we introduce a new domain decomposition scheme to solve forward–backward stochastic differential equations (FBSDEs) parallel. We reconstruct the four step scheme in Ma et al. (1994) [1] and then associate it with the idea of domain decomposition methods. We also introduce a new technique to prove the convergence of domain decomposition methods for systems of quasilinear parabolic equations and use it to prove the convergence of our scheme for the FBSDEs

    Mini-Workshop: Adaptive Methods for Control Problems Constrained by Time-Dependent PDEs

    Get PDF
    Optimization problems constrained by time-dependent PDEs (Partial Differential Equations) are challenging from a computational point of view: even in the simplest case, one needs to solve a system of PDEs coupled globally in time and space for the unknown solutions (the state, the costate and the control of the system). Typical and practically relevant examples are the control of nonlinear heat equations as they appear in laser hardening or the thermic control of flow problems (Boussinesq equations). Specifically for PDEs with a long time horizon, conventional time-stepping methods require an enormous storage of the respective other variables. In contrast, adaptive methods aim at distributing the available degrees of freedom in an a-posteriori-fashion to capture singularities and are, therefore, most promising

    A Nodally Bound-Preserving Finite Element Method

    Full text link
    This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this projection. As the projection is not injective, a stabilisation based upon the complementary projection is added in order to restore well-posedness. Within the framework of elliptic problems, the discrete problem may be viewed as a reformulation of a discrete obstacle problem, incorporating the inequality constraints through Lipschitz projections. The derivation of the proposed method is exemplified for linear and nonlinear reaction-diffusion problems. Near-best approximation results in suitable norms are established. In particular, we prove that, in the linear case, the numerical solution is the best approximation in the energy norm among all nodally bound-preserving finite element functions. A series of numerical experiments for such problems showcase the good behaviour of the proposed bound-preserving finite element method.Comment: 21 pages, 8 figure
    • …
    corecore