38,167 research outputs found

    Efficient color code decoders in d≥2d\geq 2 dimensions from toric code decoders

    Full text link
    We introduce an efficient decoder of the color code in d≥2d\geq 2 dimensions, the Restriction Decoder, which uses any dd-dimensional toric code decoder combined with a local lifting procedure to find a recovery operation. We prove that the Restriction Decoder successfully corrects errors in the color code if and only if the corresponding toric code decoding succeeds. We also numerically estimate the Restriction Decoder threshold for the color code in two and three dimensions against the bit-filp and phase-flip noise with perfect syndrome extraction. We report that the 2D color code threshold p2D≈10.2%p_{\textrm{2D}} \approx 10.2\% on the square-octagon lattice is on a par with the toric code threshold on the square lattice.Comment: 28 pages, 8 figure

    Improving soft FEC performance for higher-order modulations via optimized bit channel mappings

    Get PDF
    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.Comment: This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-12-1454

    Curves on torus layers and coding for continuous alphabet sources

    Full text link
    In this paper we consider the problem of transmitting a continuous alphabet discrete-time source over an AWGN channel. The design of good curves for this purpose relies on geometrical properties of spherical codes and projections of NN-dimensional lattices. We propose a constructive scheme based on a set of curves on the surface of a 2N-dimensional sphere and present comparisons with some previous works.Comment: 5 pages, 4 figures. Accepted for presentation at 2012 IEEE International Symposium on Information Theory (ISIT). 2th version: typos corrected. 3rd version: some typos corrected, a footnote added in Section III B, a comment added in the beggining of Section V and Theorem I adde
    • …
    corecore