2,877 research outputs found

    Learning feedforward controller for a mobile robot vehicle

    Get PDF
    This paper describes the design and realisation of an on-line learning posetracking controller for a three-wheeled mobile robot vehicle. The controller consists of two components. The first is a constant-gain feedback component, designed on the basis of a second-order model. The second is a learning feedforward component, containing a single-layer neural network, that generates a control contribution on the basis of the desired trajectory of the vehicle. The neural network uses B-spline basis functions, enabling a computationally fast implementation and fast learning. The resulting control system is able to correct for errors due to parameter mismatches and classes of structural errors in the model used for the controller design. After sufficient learning, an existing static gain controller designed on the basis of an extensive model has been outperformed in terms of tracking accuracy

    Measuring efficiency with neural networks. An application to the public sector

    Get PDF
    In this note we propose the artificial neural networks for measuring efficiency as a complementary tool to the common techniques of the efficiency literature. In the application to the public sector we find that the neural network allows to conclude more robust results to rank decision-making units.DEA

    Neural network representation and learning of mappings and their derivatives

    Get PDF
    Discussed here are recent theorems proving that artificial neural networks are capable of approximating an arbitrary mapping and its derivatives as accurately as desired. This fact forms the basis for further results establishing the learnability of the desired approximations, using results from non-parametric statistics. These results have potential applications in robotics, chaotic dynamics, control, and sensitivity analysis. An example involving learning the transfer function and its derivatives for a chaotic map is discussed

    A Nonparametric Approach to Pricing Options Learning Networks

    Get PDF
    For practitioners of equity markets, option pricing is a major challenge during high volatility periods and Black-Scholes formula for option pricing is not the proper tool for very deep out-of-the-money options. The Black-Scholes pricing errors are larger in the deeper out-of-the money options relative to the near the-money options, and it's mispricing worsens with increased volatility. Experts opinion is that the Black-Scholes model is not the proper pricing tool in high volatility situations especially for very deep out-of-the-money options. They also argue that prior to the 1987 crash, volatilities were symmetric around zero moneyness, with in-the-money and out-of-the money having higher implied volatilities than at-the-money options. However, after the crash, the call option implied volatilities were decreasing monotonically as the call went deeper into out-of-the-money, while the put option implied volatilities were decreasing monotonically as the put went deeper into in-the-money. Since these findings cannot be explained by the Black-Scholes model and its variations, researchers searched for improved option pricing models. Feedforward networks provide more accurate pricing estimates for the deeper out-of-the money options and handles pricing during high volatility with considerably lower errors for out-of-the-money call and put options. This could be invaluable information for practitioners as option pricing is a major challenge during high volatility periods. In this article a nonparametric method for estimating S&P 100 index option prices using artificial neural networks is presented. To show the value of artificial neural network pricing formulas, Black-Scholes option prices are compared with the network prices against market prices. To illustrate the practical relevance of the network pricing approach, it is applied to the pricing of S&P 100 index options from April 4, 2014 to April 9, 2014. On the five days data while Black-Scholes formula prices have a mean 10.17errorforputs,and10.17 error for puts, and 1.98 for calls, while neural network’s error is less than 5forputs,and5 for puts, and 1 for calls

    Identification of Nonlinear Systems From the Knowledge Around Different Operating Conditions: A Feed-Forward Multi-Layer ANN Based Approach

    Full text link
    The paper investigates nonlinear system identification using system output data at various linearized operating points. A feed-forward multi-layer Artificial Neural Network (ANN) based approach is used for this purpose and tested for two target applications i.e. nuclear reactor power level monitoring and an AC servo position control system. Various configurations of ANN using different activation functions, number of hidden layers and neurons in each layer are trained and tested to find out the best configuration. The training is carried out multiple times to check for consistency and the mean and standard deviation of the root mean square errors (RMSE) are reported for each configuration.Comment: "6 pages, 9 figures; The Second IEEE International Conference on Parallel, Distributed and Grid Computing (PDGC-2012), December 2012, Solan

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    Artificial Neural Networks

    Get PDF
    Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods.
    • …
    corecore