18,359 research outputs found

    Event-based computer simulation model of Aspect-type experiments strictly satisfying Einstein's locality conditions

    Get PDF
    Inspired by Einstein-Podolsky-Rosen-Bohm experiments with photons, we construct an event-based simulation model in which every essential element in the ideal experiment has a counterpart. The model satisfies Einstein's criteria of local causality and does not rely on concepts of quantum and probability theory. We consider experiments in which the averages correspond to those of a singlet and product state of a system of two S=1/2S=1/2 particles. The data is analyzed according to the experimental procedure, employing a time window to identify pairs. We study how the time window and the passage time of the photons, which depends on the relative angle between their polarization and the polarizer's direction, influences the correlations, demonstrating that the properties of the optical elements in the observation stations affect the correlations although the stations are separated spatially and temporarily. We show that the model can reproduce results which are considered to be intrinsically quantum mechanical

    Bootstrap and permutation tests of independence for point processes

    Get PDF
    Motivated by a neuroscience question about synchrony detection in spike train analysis, we deal with the independence testing problem for point processes. We introduce non-parametric test statistics, which are rescaled general UU-statistics, whose corresponding critical values are constructed from bootstrap and randomization/permutation approaches, making as few assumptions as possible on the underlying distribution of the point processes. We derive general consistency results for the bootstrap and for the permutation w.r.t. to Wasserstein's metric, which induce weak convergence as well as convergence of second order moments. The obtained bootstrap or permutation independence tests are thus proved to be asymptotically of the prescribed size, and to be consistent against any reasonable alternative. A simulation study is performed to illustrate the derived theoretical results, and to compare the performance of our new tests with existing ones in the neuroscientific literature

    A comparative study of nonparametric methods for pattern recognition

    Get PDF
    The applied research discussed in this report determines and compares the correct classification percentage of the nonparametric sign test, Wilcoxon's signed rank test, and K-class classifier with the performance of the Bayes classifier. The performance is determined for data which have Gaussian, Laplacian and Rayleigh probability density functions. The correct classification percentage is shown graphically for differences in modes and/or means of the probability density functions for four, eight and sixteen samples. The K-class classifier performed very well with respect to the other classifiers used. Since the K-class classifier is a nonparametric technique, it usually performed better than the Bayes classifier which assumes the data to be Gaussian even though it may not be. The K-class classifier has the advantage over the Bayes in that it works well with non-Gaussian data without having to determine the probability density function of the data. It should be noted that the data in this experiment was always unimodal

    Multilingual Twitter Sentiment Classification: The Role of Human Annotators

    Get PDF
    What are the limits of automated Twitter sentiment classification? We analyze a large set of manually labeled tweets in different languages, use them as training data, and construct automated classification models. It turns out that the quality of classification models depends much more on the quality and size of training data than on the type of the model trained. Experimental results indicate that there is no statistically significant difference between the performance of the top classification models. We quantify the quality of training data by applying various annotator agreement measures, and identify the weakest points of different datasets. We show that the model performance approaches the inter-annotator agreement when the size of the training set is sufficiently large. However, it is crucial to regularly monitor the self- and inter-annotator agreements since this improves the training datasets and consequently the model performance. Finally, we show that there is strong evidence that humans perceive the sentiment classes (negative, neutral, and positive) as ordered

    Inferring the intensity of Poisson processes at the limit of the detector sensitivity (with a case study on gravitational wave burst search)

    Get PDF
    We consider the issue of reporting the result of search experiment in the most unbiased and efficient way, i.e. in a way which allows an easy interpretation and combination of results and which do not depend on whether the experimenters believe or not to having found the searched-for effect. Since this work uses the language of Bayesian theory, to which most physicists are not used, we find that it could be useful to practitioners to have in a single paper a simple presentation of Bayesian inference, together with an example of application of it in search of rare processes.Comment: 36 pages, 11 figures, Latex files using cernart.cls (included). This paper and related work are also available at http://www-zeus.roma1.infn.it/~agostini/prob+stat.htm
    • …
    corecore