7,298 research outputs found

    Achievable Rates for K-user Gaussian Interference Channels

    Full text link
    The aim of this paper is to study the achievable rates for a KK user Gaussian interference channels for any SNR using a combination of lattice and algebraic codes. Lattice codes are first used to transform the Gaussian interference channel (G-IFC) into a discrete input-output noiseless channel, and subsequently algebraic codes are developed to achieve good rates over this new alphabet. In this context, a quantity called efficiency is introduced which reflects the effectiveness of the algebraic coding strategy. The paper first addresses the problem of finding high efficiency algebraic codes. A combination of these codes with Construction-A lattices is then used to achieve non trivial rates for the original Gaussian interference channel.Comment: IEEE Transactions on Information Theory, 201

    Robust Lattice Alignment for K-user MIMO Interference Channels with Imperfect Channel Knowledge

    Full text link
    In this paper, we consider a robust lattice alignment design for K-user quasi-static MIMO interference channels with imperfect channel knowledge. With random Gaussian inputs, the conventional interference alignment (IA) method has the feasibility problem when the channel is quasi-static. On the other hand, structured lattices can create structured interference as opposed to the random interference caused by random Gaussian symbols. The structured interference space can be exploited to transmit the desired signals over the gaps. However, the existing alignment methods on the lattice codes for quasi-static channels either require infinite SNR or symmetric interference channel coefficients. Furthermore, perfect channel state information (CSI) is required for these alignment methods, which is difficult to achieve in practice. In this paper, we propose a robust lattice alignment method for quasi-static MIMO interference channels with imperfect CSI at all SNR regimes, and a two-stage decoding algorithm to decode the desired signal from the structured interference space. We derive the achievable data rate based on the proposed robust lattice alignment method, where the design of the precoders, decorrelators, scaling coefficients and interference quantization coefficients is jointly formulated as a mixed integer and continuous optimization problem. The effect of imperfect CSI is also accommodated in the optimization formulation, and hence the derived solution is robust to imperfect CSI. We also design a low complex iterative optimization algorithm for our robust lattice alignment method by using the existing iterative IA algorithm that was designed for the conventional IA method. Numerical results verify the advantages of the proposed robust lattice alignment method

    The Approximate Capacity of the Many-to-One and One-to-Many Gaussian Interference Channels

    Full text link
    Recently, Etkin, Tse, and Wang found the capacity region of the two-user Gaussian interference channel to within one bit/s/Hz. A natural goal is to apply this approach to the Gaussian interference channel with an arbitrary number of users. We make progress towards this goal by finding the capacity region of the many-to-one and one-to-many Gaussian interference channels to within a constant number of bits. The result makes use of a deterministic model to provide insight into the Gaussian channel. The deterministic model makes explicit the dimension of signal scale. A central theme emerges: the use of lattice codes for alignment of interfering signals on the signal scale.Comment: 45 pages, 16 figures. Submitted to IEEE Transactions on Information Theor

    Lattice Codes for Many-to-One Interference Channels With and Without Cognitive Messages

    Full text link
    A new achievable rate region is given for the Gaussian cognitive many-to-one interference channel. The proposed novel coding scheme is based on the compute-and-forward approach with lattice codes. Using the idea of decoding sums of codewords, our scheme improves considerably upon the conventional coding schemes which treat interference as noise or decode messages simultaneously. Our strategy also extends directly to the usual many-to-one interference channels without cognitive messages. Comparing to the usual compute-and-forward scheme where a fixed lattice is used for the code construction, the novel scheme employs scaled lattices and also encompasses key ingredients of the existing schemes for the cognitive interference channel. With this new component, our scheme achieves a larger rate region in general. For some symmetric channel settings, new constant gap or capacity results are established, which are independent of the number of users in the system.Comment: To appear in IEEE Transactions on Information Theor

    Interference management for Interference Channels: Performance improvement and lattice techniques

    Get PDF
    This thesis focuses on interference management methods for interference channels, in particular on interference alignment. The aim is to contribute to the understanding of issues such as the performance of the interference alignment scheme and lattice codes for interference channels. Interference alignment is studied from two perspectives. One is the signal space perspective where precoding methods are designed to align the interference in half of the received subspace. Cadambe and Jafar found precoding matrices to achieve the theoretical degrees of freedom. However, using an interference suppression technique over the Cadambe and Jafar scheme, yields poor performance. Thus, in this thesis precoding methods such as singular value decomposition and Tomlinson-Harashima precoding are proposed to improve performance. The second perspective is on the signal scale, where structured codes are used to align interference. For this, lattice codes are suitable. In this research, the problem was initially approached with a many-to-one interference channel. Using lattices, joint maximum-likelihood decoding of the desired signal and the sum of the interference signals is used, and the union bound of the error probability for user 1 is derived, in terms of the theta series. Later, a symmetric interference channel is studied. Jafar built a scheme for every level of interference, where interference was aligned and could be cancelled. In this thesis, Barnes-Wall lattices are used since they have a similar structure to the scheme proposed by Jafar, and it is shown to be possible to improve the performance of the technique using codes constructed with Barnes-Wall lattices. Finally, previous work has found the generalized degrees of freedom for a two-user symmetric interference channel using random codes. Here, we obtain the generalized degrees of freedom for that channel setting using lattice Gaussian distribution.Open Acces

    Compute-and-Forward: Harnessing Interference through Structured Codes

    Get PDF
    Interference is usually viewed as an obstacle to communication in wireless networks. This paper proposes a new strategy, compute-and-forward, that exploits interference to obtain significantly higher rates between users in a network. The key idea is that relays should decode linear functions of transmitted messages according to their observed channel coefficients rather than ignoring the interference as noise. After decoding these linear equations, the relays simply send them towards the destinations, which given enough equations, can recover their desired messages. The underlying codes are based on nested lattices whose algebraic structure ensures that integer combinations of codewords can be decoded reliably. Encoders map messages from a finite field to a lattice and decoders recover equations of lattice points which are then mapped back to equations over the finite field. This scheme is applicable even if the transmitters lack channel state information.Comment: IEEE Trans. Info Theory, to appear. 23 pages, 13 figure

    Nested Lattice Codes for Gaussian Relay Networks with Interference

    Full text link
    In this paper, a class of relay networks is considered. We assume that, at a node, outgoing channels to its neighbors are orthogonal, while incoming signals from neighbors can interfere with each other. We are interested in the multicast capacity of these networks. As a subclass, we first focus on Gaussian relay networks with interference and find an achievable rate using a lattice coding scheme. It is shown that there is a constant gap between our achievable rate and the information theoretic cut-set bound. This is similar to the recent result by Avestimehr, Diggavi, and Tse, who showed such an approximate characterization of the capacity of general Gaussian relay networks. However, our achievability uses a structured code instead of a random one. Using the same idea used in the Gaussian case, we also consider linear finite-field symmetric networks with interference and characterize the capacity using a linear coding scheme.Comment: 23 pages, 5 figures, submitted to IEEE Transactions on Information Theor

    Secure Degrees of Freedom for Gaussian Channels with Interference: Structured Codes Outperform Gaussian Signaling

    Full text link
    In this work, we prove that a positive secure degree of freedom is achievable for a large class of Gaussian channels as long as the channel is not degraded and the channel is fully connected. This class includes the MAC wire-tap channel, the 2-user interference channel with confidential messages, the 2-user interference channel with an external eavesdropper. Best known achievable schemes to date for these channels use Gaussian signaling. In this work, we show that structured codes outperform Gaussian random codes at high SNR when channel gains are real numbers.Comment: 6 pages, Submitted to IEEE Globecom, March 200
    • …
    corecore