259,486 research outputs found

    Edge-Stable Equimatchable Graphs

    Full text link
    A graph GG is \emph{equimatchable} if every maximal matching of GG has the same cardinality. We are interested in equimatchable graphs such that the removal of any edge from the graph preserves the equimatchability. We call an equimatchable graph GG \emph{edge-stable} if GeG\setminus {e}, that is the graph obtained by the removal of edge ee from GG, is also equimatchable for any eE(G)e \in E(G). After noticing that edge-stable equimatchable graphs are either 2-connected factor-critical or bipartite, we characterize edge-stable equimatchable graphs. This characterization yields an O(min(n3.376,n1.5m))O(\min(n^{3.376}, n^{1.5}m)) time recognition algorithm. Lastly, we introduce and shortly discuss the related notions of edge-critical, vertex-stable and vertex-critical equimatchable graphs. In particular, we emphasize the links between our work and the well-studied notion of shedding vertices, and point out some open questions

    Coupling of hard dimers to dynamical lattices via random tensors

    Full text link
    We study hard dimers on dynamical lattices in arbitrary dimensions using a random tensor model. The set of lattices corresponds to triangulations of the d-sphere and is selected by the large N limit. For small enough dimer activities, the critical behavior of the continuum limit is the one of pure random lattices. We find a negative critical activity where the universality class is changed as dimers become critical, in a very similar way hard dimers exhibit a Yang-Lee singularity on planar dynamical graphs. Critical exponents are calculated exactly. An alternative description as a system of `color-sensitive hard-core dimers' on random branched polymers is provided.Comment: 12 page

    Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm

    Full text link
    Linear rank-width is a linearized variation of rank-width, and it is deeply related to matroid path-width. In this paper, we show that the linear rank-width of every nn-vertex distance-hereditary graph, equivalently a graph of rank-width at most 11, can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), and a linear layout witnessing the linear rank-width can be computed with the same time complexity. As a corollary, we show that the path-width of every nn-element matroid of branch-width at most 22 can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), provided that the matroid is given by an independent set oracle. To establish this result, we present a characterization of the linear rank-width of distance-hereditary graphs in terms of their canonical split decompositions. This characterization is similar to the known characterization of the path-width of forests given by Ellis, Sudborough, and Turner [The vertex separation and search number of a graph. Inf. Comput., 113(1):50--79, 1994]. However, different from forests, it is non-trivial to relate substructures of the canonical split decomposition of a graph with some substructures of the given graph. We introduce a notion of `limbs' of canonical split decompositions, which correspond to certain vertex-minors of the original graph, for the right characterization.Comment: 28 pages, 3 figures, 2 table. A preliminary version appeared in the proceedings of WG'1

    Semi-Analytical Solution of the ϕ4\phi^4 Theory on an F4F_4 Lattice

    Full text link
    Investigating the cutoff dependence of the Higgs mass triviality bound, the ϕ4\phi^4 theory is formulated on an F4F_4 lattice which preserves Lorentz invariance to a higher degree than the commonly used hypercubic lattice. I solve this model non-perturbatively by evaluating the high temperature expansion through 13th order following the approach of L\"uscher and Weisz. The results are continued across the transition line into the broken phase by integrating the perturbative RG equations. In the broken phase, the renormalized coupling never exceeds 2/3 of the tree level unitarity bound when Λ/mR2\Lambda/m_R \geq 2. The results confirm recent Monte Carlo data and I obtain as an upper bound for the Higgs mass mR/fπ2.46±0.02HTE±0.08PTm_R/f_\pi \leq 2.46 \pm 0.02_{\rm HTE} \pm 0.08_{\rm PT} at Λ/mR=2\Lambda/m_R=2.Comment: 36 pages, CU-TP-603, Latex, 3 PS figures included, uuencoded compressed shar fil
    corecore