28,531 research outputs found

    Minimum mean-squared error iterative successive parallel arbitrated decision feedback detectors for DS-CDMA systems

    Get PDF
    In this paper we propose minimum mean squared error (MMSE) iterative successive parallel arbitrated decision feedback (DF) receivers for direct sequence code division multiple access (DS-CDMA) systems. We describe the MMSE design criterion for DF multiuser detectors along with successive, parallel and iterative interference cancellation structures. A novel efficient DF structure that employs successive cancellation with parallel arbitrated branches and a near-optimal low complexity user ordering algorithm are presented. The proposed DF receiver structure and the ordering algorithm are then combined with iterative cascaded DF stages for mitigating the deleterious effects of error propagation for convolutionally encoded systems with both Viterbi and turbo decoding as well as for uncoded schemes. We mathematically study the relations between the MMSE achieved by the analyzed DF structures, including the novel scheme, with imperfect and perfect feedback. Simulation results for an uplink scenario assess the new iterative DF detectors against linear receivers and evaluate the effects of error propagation of the new cancellation methods against existing ones

    Iterative Decoding and Turbo Equalization: The Z-Crease Phenomenon

    Full text link
    Iterative probabilistic inference, popularly dubbed the soft-iterative paradigm, has found great use in a wide range of communication applications, including turbo decoding and turbo equalization. The classic approach of analyzing the iterative approach inevitably use the statistical and information-theoretical tools that bear ensemble-average flavors. This paper consider the per-block error rate performance, and analyzes it using nonlinear dynamical theory. By modeling the iterative processor as a nonlinear dynamical system, we report a universal "Z-crease phenomenon:" the zig-zag or up-and-down fluctuation -- rather than the monotonic decrease -- of the per-block errors, as the number of iteration increases. Using the turbo decoder as an example, we also report several interesting motion phenomenons which were not previously reported, and which appear to correspond well with the notion of "pseudo codewords" and "stopping/trapping sets." We further propose a heuristic stopping criterion to control Z-crease and identify the best iteration. Our stopping criterion is most useful for controlling the worst-case per-block errors, and helps to significantly reduce the average-iteration numbers.Comment: 6 page

    Short Block-length Codes for Ultra-Reliable Low-Latency Communications

    Full text link
    This paper reviews the state of the art channel coding techniques for ultra-reliable low latency communication (URLLC). The stringent requirements of URLLC services, such as ultra-high reliability and low latency, have made it the most challenging feature of the fifth generation (5G) mobile systems. The problem is even more challenging for the services beyond the 5G promise, such as tele-surgery and factory automation, which require latencies less than 1ms and failure rate as low as 10−910^{-9}. The very low latency requirements of URLLC do not allow traditional approaches such as re-transmission to be used to increase the reliability. On the other hand, to guarantee the delay requirements, the block length needs to be small, so conventional channel codes, originally designed and optimised for moderate-to-long block-lengths, show notable deficiencies for short blocks. This paper provides an overview on channel coding techniques for short block lengths and compares them in terms of performance and complexity. Several important research directions are identified and discussed in more detail with several possible solutions.Comment: Accepted for publication in IEEE Communications Magazin

    Iterative Soft Input Soft Output Decoding of Reed-Solomon Codes by Adapting the Parity Check Matrix

    Full text link
    An iterative algorithm is presented for soft-input-soft-output (SISO) decoding of Reed-Solomon (RS) codes. The proposed iterative algorithm uses the sum product algorithm (SPA) in conjunction with a binary parity check matrix of the RS code. The novelty is in reducing a submatrix of the binary parity check matrix that corresponds to less reliable bits to a sparse nature before the SPA is applied at each iteration. The proposed algorithm can be geometrically interpreted as a two-stage gradient descent with an adaptive potential function. This adaptive procedure is crucial to the convergence behavior of the gradient descent algorithm and, therefore, significantly improves the performance. Simulation results show that the proposed decoding algorithm and its variations provide significant gain over hard decision decoding (HDD) and compare favorably with other popular soft decision decoding methods.Comment: 10 pages, 10 figures, final version accepted by IEEE Trans. on Information Theor

    Adaptive and Iterative Multi-Branch MMSE Decision Feedback Detection Algorithms for MIMO Systems

    Full text link
    In this work, decision feedback (DF) detection algorithms based on multiple processing branches for multi-input multi-output (MIMO) spatial multiplexing systems are proposed. The proposed detector employs multiple cancellation branches with receive filters that are obtained from a common matrix inverse and achieves a performance close to the maximum likelihood detector (MLD). Constrained minimum mean-squared error (MMSE) receive filters designed with constraints on the shape and magnitude of the feedback filters for the multi-branch MMSE DF (MB-MMSE-DF) receivers are presented. An adaptive implementation of the proposed MB-MMSE-DF detector is developed along with a recursive least squares-type algorithm for estimating the parameters of the receive filters when the channel is time-varying. A soft-output version of the MB-MMSE-DF detector is also proposed as a component of an iterative detection and decoding receiver structure. A computational complexity analysis shows that the MB-MMSE-DF detector does not require a significant additional complexity over the conventional MMSE-DF detector, whereas a diversity analysis discusses the diversity order achieved by the MB-MMSE-DF detector. Simulation results show that the MB-MMSE-DF detector achieves a performance superior to existing suboptimal detectors and close to the MLD, while requiring significantly lower complexity.Comment: 10 figures, 3 tables; IEEE Transactions on Wireless Communications, 201
    • …
    corecore