2,345 research outputs found

    Stationarity and invertibility of a dynamic correlation matrix

    Get PDF
    summary:One of the most widely-used multivariate conditional volatility models is the dynamic conditional correlation (or DCC) specification. However, the underlying stochastic process to derive DCC has not yet been established, which has made problematic the derivation of asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical properties of the QMLE of the DCC parameters have purportedly been derived under highly restrictive and unverifiable regularity conditions. The paper shows that the DCC model can be obtained from a vector random coefficient moving average process, and derives the stationarity and invertibility conditions of the DCC model. The derivation of DCC from a vector random coefficient moving average process raises three important issues, as follows: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance model of the returns shocks rather than a dynamic conditional correlation model; (ii) provides the motivation, which is presently missing, for standardization of the conditional covariance model to obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or GARCH model for DCC is based on the standardized shocks rather than the returns shocks. The derivation of the regularity conditions, especially stationarity and invertibility, may subsequently lead to a solid statistical foundation for the estimates of the DCC parameters. Several new results are also derived for univariate models, including a novel conditional volatility model expressed in terms of standardized shocks rather than returns shocks, as well as the associated stationarity and invertibility conditions

    A One Line Derivation of DCC: Application of a Vector Random Coefficient Moving Average Process

    Get PDF
    One of the most widely-used multivariate conditional volatility models is the dynamic conditional correlation (or DCC) specification. However, the underlying stochastic process to derive DCC has not yet been established, which has made problematic the derivation of asymptotic properties of the Quasi-Maximum Likelihood Estimators. The paper shows that the DCC model can be obtained from a vector random coefficient moving average process, and derives the stationarity and invertibility conditions. The derivation of DCC from a vector random coefficient moving average process raises three important issues: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance model of the returns shocks rather than a dynamic conditional correlation model; (ii) provides the motivation, which is presently missing, for standardization of the conditional covariance model to obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or GARCH model for DCC is based on the standardized shocks rather than the returns shocks. The derivation of the regularity conditions should subsequently lead to a solid statistical foundation for the estimates of the DCC parameters

    The Correct Regularity Condition and Interpretation of Asymmetry in EGARCH

    Get PDF
    In the class of univariate conditional volatility models, the three most popular are the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992), and the exponential GARCH (or EGARCH) model of Nelson (1990, 1991). For purposes of deriving the mathematical regularity properties, including invertibility, to determine the likelihood function for estimation, and the statistical conditions to establish asymptotic properties, it is convenient to understand the stochastic properties underlying the three univariate models. The random coefficient autoregressive process was used to obtain GARCH by Tsay (1987), an extension of which was used by McAleer (2004) to obtain GJR. A random coefficient complex nonlinear moving average process was used by McAleer and Hafner (2014) to obtain EGARCH. These models can be used to capture asymmetry, which denotes the different effects on conditional volatility of positive and negative effects of equal magnitude, and possibly also leverage, which is the negative correlation between returns shocks and subsequent shocks to volatility (see Black 1979). McAleer (2014) showed that asymmetry was possible for GJR, but not leverage. McAleer and Hafner showed that leverage was not possible for EGARCH. Surprisingly, the conditions for asymmetry in EGARCH seem to have been ignored in the literature, or have concentrated on the incorrect conditions, with no clear explanation, and hence with associated misleading interpretations. The purpose of the paper is to derive the regularity condition for asymmetry in EGARCH to provide the correct interpretation. It is shown that, in practice, EGARCH always displays asymmetry, though not leverage

    Noise recovery for L\'evy-driven CARMA processes and high-frequency behaviour of approximating Riemann sums

    Full text link
    We consider high-frequency sampled continuous-time autoregressive moving average (CARMA) models driven by finite-variance zero-mean L\'evy processes. An L^2-consistent estimator for the increments of the driving L\'evy process without order selection in advance is proposed if the CARMA model is invertible. In the second part we analyse the high-frequency behaviour of approximating Riemann sum processes, which represent a natural way to simulate continuous-time moving average processes on a discrete grid. We shall compare their autocovariance structure with the one of sampled CARMA processes, where the rule of integration plays a crucial role. Moreover, new insight into the kernel estimation procedure of Brockwell et al. (2012a) is given.Comment: 26 pages, 2 figure

    On the Invertibility of EGARCH

    Get PDF
    __Abstract__ Of the two most widely estimated univariate asymmetric conditional volatility models, the exponential GARCH (or EGARCH) specification can capture asymmetry, which refers to the different effects on conditional volatility of positive and negative effects of equal magnitude, and leverage, which refers to the negative correlation between the returns shocks and subsequent shocks to volatility. However, the statistical properties of the (quasi-) maximum likelihood estimator (QMLE) of the EGARCH parameters are not available under general conditions, but only for special cases under highly restrictive and unverifiable conditions. A limitation in the development of asymptotic properties of the QMLE for EGARCH is the lack of an invertibility condition for the returns shocks underlying the model. It is shown in this paper that the EGARCH model can be derived from a stochastic process, for which the invertibility conditions can be stated simply and explicitly. This will be useful in re-interpreting the existing properties of the QMLE of the EGARCH parameters
    corecore