15,474 research outputs found

    Denjoy constructions for fibred homeomorphisms of the torus

    Full text link
    We construct different types of quasiperiodically forced circle homeomorphisms with transitive but non-minimal dynamics. Concerning the recent Poincar\'e-like classification for this class of maps of Jaeger-Stark, we demonstrate that transitive but non-minimal behaviour can occur in each of the different cases. This closes one of the last gaps in the topological classification. Actually, we are able to get some transitive quasiperiodically forced circle homeomorphisms with rather complicated minimal sets. For example, we show that, in some of the examples we construct, the unique minimal set is a Cantor set and its intersection with each vertical fibre is uncountable and nowhere dense (but may contain isolated points). We also prove that minimal sets of the later kind cannot occur when the dynamics are given by the projective action of a quasiperiodic SL(2,R)-cocycle. More precisely, we show that, for a quasiperiodic SL(2,R)-cocycle, any minimal strict subset of the torus either is a union of finitely many continuous curves, or contains at most two points on generic fibres

    Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem

    Full text link
    We consider arrangements of axis-aligned rectangles in the plane. A geometric arrangement specifies the coordinates of all rectangles, while a combinatorial arrangement specifies only the respective intersection type in which each pair of rectangles intersects. First, we investigate combinatorial contact arrangements, i.e., arrangements of interior-disjoint rectangles, with a triangle-free intersection graph. We show that such rectangle arrangements are in bijection with the 4-orientations of an underlying planar multigraph and prove that there is a corresponding geometric rectangle contact arrangement. Moreover, we prove that every triangle-free planar graph is the contact graph of such an arrangement. Secondly, we introduce the question whether a given rectangle arrangement has a combinatorially equivalent square arrangement. In addition to some necessary conditions and counterexamples, we show that rectangle arrangements pierced by a horizontal line are squarable under certain sufficient conditions.Comment: 15 pages, 13 figures, extended version of a paper to appear at the International Symposium on Graph Drawing and Network Visualization (GD) 201

    Reidemeister/Roseman-type Moves to Embedded Foams in 4-dimensional Space

    Full text link
    The dual to a tetrahedron consists of a single vertex at which four edges and six faces are incident. Along each edge, three faces converge. A 2-foam is a compact topological space such that each point has a neighborhood homeomorphic to a neighborhood of that complex. Knotted foams in 4-dimensional space are to knotted surfaces, as knotted trivalent graphs are to classical knots. The diagram of a knotted foam consists of a generic projection into 4-space with crossing information indicated via a broken surface. In this paper, a finite set of moves to foams are presented that are analogous to the Reidemeister-type moves for knotted graphs. These moves include the Roseman moves for knotted surfaces. Given a pair of diagrams of isotopic knotted foams there is a finite sequence of moves taken from this set that, when applied to one diagram sequentially, produces the other diagram.Comment: 18 pages, 29 figures, Be aware: the figure on page 3 takes some time to load. A higher resolution version is found at http://www.southalabama.edu/mathstat/personal_pages/carter/Moves2Foams.pdf . If you want to use to any drawings, please contact m

    Extremal Values of the Interval Number of a Graph

    Get PDF
    The interval number i(G)i( G ) of a simple graph GG is the smallest number tt such that to each vertex in GG there can be assigned a collection of at most tt finite closed intervals on the real line so that there is an edge between vertices vv and ww in GG if and only if some interval for vv intersects some interval for ww. The well known interval graphs are precisely those graphs GG with i(G)≦1i ( G )\leqq 1. We prove here that for any graph GG with maximum degree d,i(G)≦⌈12(d+1)⌉d, i ( G )\leqq \lceil \frac{1}{2} ( d + 1 ) \rceil . This bound is attained by every regular graph of degree dd with no triangles, so is best possible. The degree bound is applied to show that i(G)≦⌈13n⌉i ( G )\leqq \lceil \frac{1}{3}n \rceil for graphs on nn vertices and i(G)≦⌊e⌋i ( G )\leqq \lfloor \sqrt{e} \rfloor for graphs with ee edges
    • …
    corecore