2,280 research outputs found

    Non-intersecting Ryser hypergraphs

    Full text link
    A famous conjecture of Ryser states that every rr-partite hypergraph has vertex cover number at most r−1r - 1 times the matching number. In recent years, hypergraphs meeting this conjectured bound, known as rr-Ryser hypergraphs, have been studied extensively. It was recently proved by Haxell, Narins and Szab\'{o} that all 33-Ryser hypergraphs with matching number ν>1\nu > 1 are essentially obtained by taking ν\nu disjoint copies of intersecting 33-Ryser hypergraphs. Abu-Khazneh showed that such a characterisation is false for r=4r = 4 by giving a computer generated example of a 44-Ryser hypergraph with ν=2\nu = 2 whose vertex set cannot be partitioned into two sets such that we have an intersecting 44-Ryser hypergraph on each of these parts. Here we construct new infinite families of rr-Ryser hypergraphs, for any given matching number ν>1\nu > 1, that do not contain two vertex disjoint intersecting rr-Ryser subhypergraphs.Comment: 8 pages, some corrections in the proof of Lemma 3.6, added more explanation in the appendix, and other minor change

    Coverings and matchings in r-partite hypergraphs

    Get PDF
    Ryser\u27s conjecture postulates that for r -partite hypergraphs, τ ≤ (r - 1)ν where τ is the covering number of the hypergraph and ν is the matching number. Although this conjecture has been open since the 1960s, researchers have resolved it for special cases such as for intersecting hypergraphs where r ≤ 5. In this article, we prove several results pertaining to matchings and coverings in r -partite intersecting hypergraphs. First, we prove that finding a minimum cardinality vertex cover for an r -partite intersecting hypergraph is NP-hard. Second, we note Ryser\u27s conjecture for intersecting hypergraphs is easily resolved if a given hypergraph does not contain a particular subhypergraph, which we call a “tornado.” We prove several bounds on the covering number of tornados. Finally, we prove the integrality gap for the standard integer linear programming formulation of the maximum cardinality r -partite hypergraph matching problem is at least r - k where k is the smallest positive integer such that r - k is a prime power

    A family of extremal hypergraphs for Ryser's conjecture

    Get PDF
    Ryser's Conjecture states that for any rr-partite rr-uniform hypergraph, the vertex cover number is at most r−1r{-}1 times the matching number. This conjecture is only known to be true for r≤3r\leq 3 in general and for r≤5r\leq 5 if the hypergraph is intersecting. There has also been considerable effort made for finding hypergraphs that are extremal for Ryser's Conjecture, i.e. rr-partite hypergraphs whose cover number is r−1r-1 times its matching number. Aside from a few sporadic examples, the set of uniformities rr for which Ryser's Conjecture is known to be tight is limited to those integers for which a projective plane of order r−1r-1 exists. We produce a new infinite family of rr-uniform hypergraphs extremal to Ryser's Conjecture, which exists whenever a projective plane of order r−2r-2 exists. Our construction is flexible enough to produce a large number of non-isomorphic extremal hypergraphs. In particular, we define what we call the {\em Ryser poset} of extremal intersecting rr-partite rr-uniform hypergraphs and show that the number of maximal and minimal elements is exponential in r\sqrt{r}. This provides further evidence for the difficulty of Ryser's Conjecture
    • …
    corecore