6,089 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Aberrant phase separation and nucleolar dysfunction in rare genetic diseases

    Full text link
    Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions1-3. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus4,5. This suggests that mutations in disordered proteins may alter condensate properties and function6-8. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.© 2023. The Author(s)

    Multi-dimensional omics approaches to dissect natural immune control mechanisms associated with RNA virus infections

    Get PDF
    In recent decades, global health has been challenged by emerging and re-emerging viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), human immunodeficiency viruses (HIV-1), and Crimean–Congo hemorrhagic fever virus (CCHFV). Studies have shown dysregulations in the host metabolic processes against SARS-CoV2 and HIV-1 infections, and the research on CCHFV infection is still in the infant stage. Hence, understanding the host metabolic re-programming on the reaction level in infectious disease has therapeutic importance. The thesis uses systems biology methods to investigate the host metabolic alterations in response to SARS-CoV2, HIV-1, and CCHFV infections. The three distinct viruses induce distinct effects on human metabolism that, nevertheless, show some commonalities. We have identified alterations in various immune cell types in patients during the infections of the three viruses. Further, differential expression analysis identified that COVID-19 causes disruptions in pathways related to antiviral response and metabolism (fructose mannose metabolism, oxidative phosphorylation (OXPHOS), and pentose phosphate pathway). Up-regulation of OXPHOS and ROS pathways with most changes in OXPHOS complexes I, III, and IV were identified in people living with HIV on treatment (PLWHART). The acute phase of CCHFV infection is found to be linked with OXPHOS, glycolysis, N-glycan biosynthesis, and NOD-like receptor signaling pathways. The dynamic nature of the metabolic process and adaptive immune response in CCHFV-pathogenesis are also observed. Further, we have identified different metabolic flux in reactions transporting TCA cycle intermediates from the cytosol to mitochondria in COVID-19 patients. Genes such as monocarboxylate transporter (SLC16A6) and nucleoside transporter (SLC29A1) and metabolites such as α-ketoglutarate, succinate, and malate were found to be linked with COVID-19 disease response. Metabolic reactions associated with amino acid, carbohydrate, and energy metabolism pathways and various transporter reactions were observed to be uniquely disrupted in PLWHART along with increased production of αketoglutarate (αKG) and ATP molecules. Changes in essential (leucine and threonine) and non-essential (arginine, alanine, and glutamine) amino acid transport were found to be caused by acute CCHFV infection. The altered flux of reactions involving TCA cycle compounds such as pyruvate, isocitrate, and alpha-ketoglutarate was also observed in CCHFV infection. The research described in the thesis displayed dysregulations in similar metabolic processes against the three viral Infections. But further downstream analysis unveiled unique alterations in several metabolic reactions specific to each virus in the same metabolic pathways showing the importance of increasing the resolution of knowledge about host metabolism in infectious diseases

    Novel 129Xe Magnetic Resonance Imaging and Spectroscopy Measurements of Pulmonary Gas-Exchange

    Get PDF
    Gas-exchange is the primary function of the lungs and involves removing carbon dioxide from the body and exchanging it within the alveoli for inhaled oxygen. Several different pulmonary, cardiac and cardiovascular abnormalities have negative effects on pulmonary gas-exchange. Unfortunately, clinical tests do not always pinpoint the problem; sensitive and specific measurements are needed to probe the individual components participating in gas-exchange for a better understanding of pathophysiology, disease progression and response to therapy. In vivo Xenon-129 gas-exchange magnetic resonance imaging (129Xe gas-exchange MRI) has the potential to overcome these challenges. When participants inhale hyperpolarized 129Xe gas, it has different MR spectral properties as a gas, as it diffuses through the alveolar membrane and as it binds to red-blood-cells. 129Xe MR spectroscopy and imaging provides a way to tease out the different anatomic components of gas-exchange simultaneously and provides spatial information about where abnormalities may occur. In this thesis, I developed and applied 129Xe MR spectroscopy and imaging to measure gas-exchange in the lungs alongside other clinical and imaging measurements. I measured 129Xe gas-exchange in asymptomatic congenital heart disease and in prospective, controlled studies of long-COVID. I also developed mathematical tools to model 129Xe MR signals during acquisition and reconstruction. The insights gained from my work underscore the potential for 129Xe gas-exchange MRI biomarkers towards a better understanding of cardiopulmonary disease. My work also provides a way to generate a deeper imaging and physiologic understanding of gas-exchange in vivo in healthy participants and patients with chronic lung and heart disease

    Complexity Science in Human Change

    Get PDF
    This reprint encompasses fourteen contributions that offer avenues towards a better understanding of complex systems in human behavior. The phenomena studied here are generally pattern formation processes that originate in social interaction and psychotherapy. Several accounts are also given of the coordination in body movements and in physiological, neuronal and linguistic processes. A common denominator of such pattern formation is that complexity and entropy of the respective systems become reduced spontaneously, which is the hallmark of self-organization. The various methodological approaches of how to model such processes are presented in some detail. Results from the various methods are systematically compared and discussed. Among these approaches are algorithms for the quantification of synchrony by cross-correlational statistics, surrogate control procedures, recurrence mapping and network models.This volume offers an informative and sophisticated resource for scholars of human change, and as well for students at advanced levels, from graduate to post-doctoral. The reprint is multidisciplinary in nature, binding together the fields of medicine, psychology, physics, and neuroscience

    Development of an in vitro blood flow model to evaluate antimicrobial coatings for blood-contacting devices

    Get PDF
    Pre-clinical evaluation of novel antimicrobial coatings for blood-contacting devices commonly relies on the performance of animal studies since alternative in vitro models do not adequately represent the interactions between blood, bacteria, and material surfaces as they occur in vivo. To reduce the need of these cost-intensive and controversial animal tests, this project was dedicated to the development of a new model setup that overcomes this limitation and allows in vitro evaluation under in vivo-like conditions. This newly developed model was intended to be directly applied to evaluate recently in-house developed antimicrobial coatings, so-called anchor polymers. Therefore, the project was divided into two parts. The first part of the project focused on the evaluation of the anchor polymer coatings concerning their applicability in blood-contacting devices. For this purpose, the PEGylated styrene-maleic acid copolymers were intensively studied using established laboratory tests. These examinations showed very promising results regarding adsorption and stability on relevant polymer substrates, antimicrobial efficacy, and biological safety of the coatings, thus revealing their great potential for future applications in medical devices. Moreover, this basic characterization was meant to allow a subsequent comparison of the new in vitro model with state-of-the-art in vitro tests. The second part of the thesis focused on the development of the realistic in vitro model. Here, a single-pass flow system realized the implementation of adjustable flow conditions. Furthermore, incubation with freshly drawn human blood provided a physiological nutrient environment and included the influence of an immune response. Staphylococcus aureus were chosen as representative microorganisms, as they are responsible for a majority of device-related blood stream infections. The resulting blood flow model was validated with one anti-adhesive and one contact-killing anchor polymer coating, confirming the model’s ability to differentiate the investigated surfaces. Inflammatory and coagulant blood activation correlated slightly with bacterial coverage, which in turn was strongly dependent on the investigated material surface. Incubation with varying flow conditions demonstrated the model’s capability to reflect the well-documented dependence of bacterial colonization and occurring flow conditions. In contrast to the state-of-the-art in vitro tests, the simultaneous incubation of test surface, bacteria and whole blood allowed the analysis of mutual interactions of the three parameters. Thus, the model represents an excellent method for pre-clinical evaluation of novel antimicrobial coatings for blood-contacting devices

    On Centrality and Population Size Effects in Urban Pollution: A Meta-Analysis of NO2 and Heat Islands and Spatial Analysis of NO2

    Get PDF
    • …
    corecore