47 research outputs found

    Structural Operational Semantics for Heterogeneously Typed Coalgebras

    Get PDF
    Concurrently interacting components of a modular software architecture are heterogeneously structured behavioural models. We consider them as coalgebras based on different endofunctors. We formalize the composition of these coalgebras as specially tailored segments of distributive laws of the bialgebraic approach of Turi and Plotkin. The resulting categorical rules for structural operational semantics involve many-sorted algebraic specifications, which leads to a description of the components together with the composed system as a single holistic behavioural system. We evaluate our approach by showing that observational equivalence is a congruence with respect to the algebraic composition operation

    Structural Operational Semantics for Heterogeneously Typed Coalgebras

    Get PDF
    Concurrently interacting components of a modular software architecture are heterogeneously structured behavioural models. We consider them as coalgebras based on different endofunctors. We formalize the composition of these coalgebras as specially tailored segments of distributive laws of the bialgebraic approach of Turi and Plotkin. The resulting categorical rules for structural operational semantics involve many-sorted algebraic specifications, which leads to a description of the components together with the composed system as a single holistic behavioural system. We evaluate our approach by showing that observational equivalence is a congruence with respect to the algebraic composition operation.publishedVersio

    Graph Transformation with Symbolic Attributes via Monadic Coalgebra Homomorphisms

    Get PDF
    We show how a coalgebraic approach leads to more natural representations of many kinds of graph structures that in the algebraic approach are frequently dealt with using ad-hoc constructions. For the case of symbolically attributed graphs, we demonstrate how using substituting coalgebra homomorphisms in double-pushout rewriting steps yields a powerful and easily understandable transformation mechanism

    A general account of coinduction up-to

    Get PDF
    Bisimulation up-to enhances the coinductive proof method for bisimilarity, providing efficient proof techniques for checking properties of different kinds of systems. We prove the soundness of such techniques in a fibrational setting, building on the seminal work of Hermida and Jacobs. This allows us to systematically obtain up-to techniques not only for bisimilarity but for a large class of coinductive predicates modeled as coalgebras. The fact that bisimulations up to context can be safely used in any language specified by GSOS rules can also be seen as an instance of our framework, using the well-known observation by Turi and Plotkin that such languages form bialgebras. In the second part of the paper, we provide a new categorical treatment of weak bisimilarity on labeled transition systems and we prove the soundness of up-to context for weak bisimulations of systems specified by cool rule formats, as defined by Bloom to ensure congruence of weak bisimilarity. The weak transition systems obtained from such cool rules give rise to lax bialgebras, rather than to bialgebras. Hence, to reach our goal, we extend the categorical framework developed in the first part to an ordered setting

    Enhanced Coalgebraic Bisimulation

    Get PDF
    International audienceWe present a systematic study of bisimulation-up-to techniques for coalgebras. This enhances the bisimulation proof method for a large class of state based systems, including labelled transition systems but also stream systems and weighted automata. Our approach allows for compositional reasoning about the soundness of enhancements. Applications include the soundness of bisimulation up to bisimilarity, up to equivalence and up to congruence. All in all, this gives a powerful and modular framework for simplified coinductive proofs of equivalence

    On requirements engineering for reactive systems: a formal methodology

    Get PDF
    This paper introduces a rigorous methodology for requirements specification of systems that react to external stimulus and consequently evolve through different operational modes, providing, in each of them, different functionalities. The proposed methodology proceeds in three stages, enriching a simple state- machine with local algebraic specifications. It resorts to an expressive variant of hybrid logic which is latter translated into first-order to allow for ample automatic tool support

    The role of logical interpretations on program development

    Get PDF
    Stepwise refinement of algebraic specifications is a well known formal methodology for program development. However, traditional notions of refinement based on signature morphisms are often too rigid to capture a number of relevant transformations in the context of software design, reuse, and adaptation. This paper proposes a new approach to refinement in which signature morphisms are replaced by logical interpretations as a means to witness refinements. The approach is first presented in the context of equational logic, and later generalised to deductive systems of arbitrary dimension. This allows, for example, refining sentential into equational specifications and the latter into modal ones.The authors express their gratitude to the anonymous referees who raised a number of pertinent questions entailing a more precise characterisation of the paper's contributions and a clarification of their scope. This work was funded by HRDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-028923 (Nasoni) and the project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690 (CIDMA-UA). The first author also acknowledges the financial assistance by the projects GetFun, reference FP7-PEOPLE-2012-IRSES, and NOCIONES IDE COMPLETUD, reference FFI2009-09345 (MICINN - Spain). A. Madeira was supported by the FCT within the project NORTE-01-0124-FEDER-000060

    A formal specification of the Fractal component model in Alloy

    Get PDF
    This report contains a formal specification of the Fractal component model using the Alloy specification language. The report covers all the elements of the (informal) reference specification of the Fractal model. It provides a truly language-independent specification of the Fractal model, and lifts the ambiguities of the reference specification

    Modular supervisory control with general indecomposable specification languages

    Get PDF
    International audienceModular supervisory control of discrete-event systems (DES), where the global DES is composed of local components that run concurrently, is considered. For supervisory control of large-scale modular DES the possibility of performing control-related computations locally (in components) is of utmost importance to computational complexity. Recently we have treated the case, where the specification language is decomposable into local specification languages and is included in the (global) plant language. In this paper the case of general specification languages that are neither necessarily decomposable nor contained in the global plant language is studied. Sufficient conditions are found under which any manipulation with the global plant is avoided for the computation of supremal controllable sublanguages of (global) indecomposable specification languages

    Behavioral institutions and refinements in generalized hidden logics

    Get PDF
    We investigate behavioral institutions and refinements in the context of the object oriented paradigm. The novelty of our approach is the application of generalized abstract algebraic logic theory of hidden heterogeneous deductive systems (called hidden k-logics) to the algebraic specification of object oriented programs. This is achieved through the Leibniz congruence relation and its combinatorial properties. We reformulate the notion of hidden k-logic as well as the behavioral logic of a hidden k-logic as institutions. We define refinements as hidden signature morphisms having the extra property of preserving logical consequence. A stricter class of refinements, the ones that preserve behavioral consequence, is studied. We establish sufficient conditions for an ordinary signature morphism to be a behavioral refinement. © J.UCS.FCT via UIM
    corecore