20,445 research outputs found

    On continuity of solutions for parabolic control systems and input-to-state stability

    Get PDF
    We study minimal conditions under which mild solutions of linear evolutionary control systems are continuous for arbitrary bounded input functions. This question naturally appears when working with boundary controlled, linear partial differential equations. Here, we focus on parabolic equations which allow for operator-theoretic methods such as the holomorphic functional calculus. Moreover, we investigate stronger conditions than continuity leading to input-to-state stability with respect to Orlicz spaces. This also implies that the notions of input-to-state stability and integral-input-to-state stability coincide if additionally the uncontrolled equation is dissipative and the input space is finite-dimensional.Comment: 19 pages, final version of preprint, Prop. 6 and Thm 7 have been generalised to arbitrary Banach spaces, the assumption of boundedness of the semigroup in Thm 10 could be droppe

    A De Giorgi Iteration-based Approach for the Establishment of ISS Properties for Burgers' Equation with Boundary and In-domain Disturbances

    Get PDF
    This note addresses input-to-state stability (ISS) properties with respect to (w.r.t.) boundary and in-domain disturbances for Burgers' equation. The developed approach is a combination of the method of De~Giorgi iteration and the technique of Lyapunov functionals by adequately splitting the original problem into two subsystems. The ISS properties in L2L^2-norm for Burgers' equation have been established using this method. Moreover, as an application of De~Giorgi iteration, ISS in L∞L^\infty-norm w.r.t. in-domain disturbances and actuation errors in boundary feedback control for a 1-DD {linear} {unstable reaction-diffusion equation} have also been established. It is the first time that the method of De~Giorgi iteration is introduced in the ISS theory for infinite dimensional systems, and the developed method can be generalized for tackling some problems on multidimensional spatial domains and to a wider class of nonlinear {partial differential equations (PDEs)Comment: This paper has been accepted for publication by IEEE Trans. on Automatic Control, and is available at http://dx.doi.org/10.1109/TAC.2018.2880160. arXiv admin note: substantial text overlap with arXiv:1710.0991

    Input-to-State Stability with Respect to Boundary Disturbances for a Class of Semi-linear Parabolic Equations

    Full text link
    This paper studies the input-to-state stability (ISS) properties based on the method of Lyapunov functionals for a class of semi-linear parabolic partial differential equations (PDEs) with respect to boundary disturbances. In order to avoid the appearance of time derivatives of the disturbances in ISS estimates, some technical inequalities are first developed, which allow directly dealing with the boundary conditions and establishing the ISS based on the method of Lyapunov functionals. The well-posedness analysis of the considered problem is carried out and the conditions for ISS are derived. Two examples are used to illustrate the application of the developed result.Comment: Manuscript submitted to Automatic

    Input-to-state stability of unbounded bilinear control systems

    Get PDF
    We study input-to-state stability of bilinear control systems with possibly unbounded control operators. Natural sufficient conditions for integral input-to-state stability are given. The obtained results are applied to a bilinearly controlled Fokker-Planck equation.Comment: 20 pages, completely new version based on the few preliminary ideas in v1. Compared to v1, the results have been significantly generalized and extende
    • …
    corecore