13,981 research outputs found

    Typed Norms for Typed Logic Programs

    Get PDF
    As typed logic programming becomes more mainstream, system building tools like partial deduction systems will need to be mapped from untyped languages to typed ones. It is important, however, when mapping techniques across that the new techniques should exploit the type system as much as possible. in this paper, we show how norms which play a crucial role in termination analysis, can be generated from the prescribed types of a logic program. Interestingly, the types highlight restrictions of earlier norms and suggest how these norms can be extended to obtain some very general and powerful notions of norm which can be used to measure any term in an almost arbitrary way. We see our work on norm derivation as a contribution to the termination analysis of typed logic programs which, in particular, forms an essential part of offline partial deduction systems

    Grammar-based Representation and Identification of Dynamical Systems

    Get PDF
    In this paper we propose a novel approach to identify dynamical systems. The method estimates the model structure and the parameters of the model simultaneously, automating the critical decisions involved in identification such as model structure and complexity selection. In order to solve the combined model structure and model parameter estimation problem, a new representation of dynamical systems is proposed. The proposed representation is based on Tree Adjoining Grammar, a formalism that was developed from linguistic considerations. Using the proposed representation, the identification problem can be interpreted as a multi-objective optimization problem and we propose a Evolutionary Algorithm-based approach to solve the problem. A benchmark example is used to demonstrate the proposed approach. The results were found to be comparable to that obtained by state-of-the-art non-linear system identification methods, without making use of knowledge of the system description.Comment: Submitted to European Control Conference (ECC) 201

    Learning Language Representations for Typology Prediction

    Full text link
    One central mystery of neural NLP is what neural models "know" about their subject matter. When a neural machine translation system learns to translate from one language to another, does it learn the syntax or semantics of the languages? Can this knowledge be extracted from the system to fill holes in human scientific knowledge? Existing typological databases contain relatively full feature specifications for only a few hundred languages. Exploiting the existence of parallel texts in more than a thousand languages, we build a massive many-to-one neural machine translation (NMT) system from 1017 languages into English, and use this to predict information missing from typological databases. Experiments show that the proposed method is able to infer not only syntactic, but also phonological and phonetic inventory features, and improves over a baseline that has access to information about the languages' geographic and phylogenetic neighbors.Comment: EMNLP 201

    Inference of termination conditions for numerical loops in Prolog

    Full text link
    We present a new approach to termination analysis of numerical computations in logic programs. Traditional approaches fail to analyse them due to non well-foundedness of the integers. We present a technique that allows overcoming these difficulties. Our approach is based on transforming a program in a way that allows integrating and extending techniques originally developed for analysis of numerical computations in the framework of query-mapping pairs with the well-known framework of acceptability. Such an integration not only contributes to the understanding of termination behaviour of numerical computations, but also allows us to perform a correct analysis of such computations automatically, by extending previous work on a constraint-based approach to termination. Finally, we discuss possible extensions of the technique, including incorporating general term orderings.Comment: To appear in Theory and Practice of Logic Programming. To appear in Theory and Practice of Logic Programmin

    Towards Parameterized Regular Type Inference Using Set Constraints

    Full text link
    We propose a method for inferring \emph{parameterized regular types} for logic programs as solutions for systems of constraints over sets of finite ground Herbrand terms (set constraint systems). Such parameterized regular types generalize \emph{parametric} regular types by extending the scope of the parameters in the type definitions so that such parameters can relate the types of different predicates. We propose a number of enhancements to the procedure for solving the constraint systems that improve the precision of the type descriptions inferred. The resulting algorithm, together with a procedure to establish a set constraint system from a logic program, yields a program analysis that infers tighter safe approximations of the success types of the program than previous comparable work, offering a new and useful efficiency vs. precision trade-off. This is supported by experimental results, which show the feasibility of our analysis
    • …
    corecore