715 research outputs found

    Structure and colour in triangle-free graphs

    Full text link
    Motivated by a recent conjecture of the first author, we prove that every properly coloured triangle-free graph of chromatic number χ\chi contains a rainbow independent set of size 12χ\lceil\frac12\chi\rceil. This is sharp up to a factor 22. This result and its short proof have implications for the related notion of chromatic discrepancy. Drawing inspiration from both structural and extremal graph theory, we conjecture that every triangle-free graph of chromatic number χ\chi contains an induced cycle of length Ω(χlogχ)\Omega(\chi\log\chi) as χ\chi\to\infty. Even if one only demands an induced path of length Ω(χlogχ)\Omega(\chi\log\chi), the conclusion would be sharp up to a constant multiple. We prove it for regular girth 55 graphs and for girth 2121 graphs. As a common strengthening of the induced paths form of this conjecture and of Johansson's theorem (1996), we posit the existence of some c>0c >0 such that for every forest HH on DD vertices, every triangle-free and induced HH-free graph has chromatic number at most cD/logDc D/\log D. We prove this assertion with `triangle-free' replaced by `regular girth 55'.Comment: 12 pages; in v2 one section was removed due to a subtle erro

    Vertex-Coloring with Star-Defects

    Full text link
    Defective coloring is a variant of traditional vertex-coloring, according to which adjacent vertices are allowed to have the same color, as long as the monochromatic components induced by the corresponding edges have a certain structure. Due to its important applications, as for example in the bipartisation of graphs, this type of coloring has been extensively studied, mainly with respect to the size, degree, and acyclicity of the monochromatic components. In this paper we focus on defective colorings in which the monochromatic components are acyclic and have small diameter, namely, they form stars. For outerplanar graphs, we give a linear-time algorithm to decide if such a defective coloring exists with two colors and, in the positive case, to construct one. Also, we prove that an outerpath (i.e., an outerplanar graph whose weak-dual is a path) always admits such a two-coloring. Finally, we present NP-completeness results for non-planar and planar graphs of bounded degree for the cases of two and three colors

    Approximately counting and sampling small witnesses using a colourful decision oracle

    Get PDF
    In this paper, we prove "black box" results for turning algorithms which decide whether or not a witness exists into algorithms to approximately count the number of witnesses, or to sample from the set of witnesses approximately uniformly, with essentially the same running time. We do so by extending the framework of Dell and Lapinskas (STOC 2018), which covers decision problems that can be expressed as edge detection in bipartite graphs given limited oracle access; our framework covers problems which can be expressed as edge detection in arbitrary k-hypergraphs given limited oracle access. (Simulating this oracle generally corresponds to invoking a decision algorithm.) This includes many key problems in both the fine-grained setting (such as k-SUM, k-OV and weighted k-Clique) and the parameterised setting (such as induced subgraphs of size k or weight-k solutions to CSPs). From an algorithmic standpoint, our results will make the development of new approximate counting algorithms substantially easier; indeed, it already yields a new state-of-the-art algorithm for approximately counting graph motifs, improving on Jerrum and Meeks (JCSS 2015) unless the input graph is very dense and the desired motif very small. Our k-hypergraph reduction framework generalises and strengthens results in the graph oracle literature due to Beame et al. (ITCS 2018) and Bhattacharya et al. (CoRR abs/1808.00691)

    Parameterised and Fine-Grained Subgraph Counting, Modulo 2

    Get PDF
    Given a class of graphs ?, the problem ?Sub(?) is defined as follows. The input is a graph H ? ? together with an arbitrary graph G. The problem is to compute, modulo 2, the number of subgraphs of G that are isomorphic to H. The goal of this research is to determine for which classes ? the problem ?Sub(?) is fixed-parameter tractable (FPT), i.e., solvable in time f(|H|)?|G|^O(1). Curticapean, Dell, and Husfeldt (ESA 2021) conjectured that ?Sub(?) is FPT if and only if the class of allowed patterns ? is matching splittable, which means that for some fixed B, every H ? ? can be turned into a matching (a graph in which every vertex has degree at most 1) by removing at most B vertices. Assuming the randomised Exponential Time Hypothesis, we prove their conjecture for (I) all hereditary pattern classes ?, and (II) all tree pattern classes, i.e., all classes ? such that every H ? ? is a tree. We also establish almost tight fine-grained upper and lower bounds for the case of hereditary patterns (I)

    Combinatorics

    Get PDF
    [no abstract available

    Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

    Full text link
    We study a query model of computation in which an n-vertex k-hypergraph can be accessed only via its independence oracle or via its colourful independence oracle, and each oracle query may incur a cost depending on the size of the query. In each of these models, we obtain oracle algorithms to approximately count the hypergraph's edges, and we unconditionally prove that no oracle algorithm for this problem can have significantly smaller worst-case oracle cost than our algorithms

    Networking - A Statistical Physics Perspective

    Get PDF
    Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with non-linear large scale systems. This paper aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.Comment: (Review article) 71 pages, 14 figure
    corecore