22,193 research outputs found

    3-Factor-criticality in double domination edge critical graphs

    Full text link
    A vertex subset SS of a graph GG is a double dominating set of GG if ∣N[v]∩S∣≥2|N[v]\cap S|\geq 2 for each vertex vv of GG, where N[v]N[v] is the set of the vertex vv and vertices adjacent to vv. The double domination number of GG, denoted by γ×2(G)\gamma_{\times 2}(G), is the cardinality of a smallest double dominating set of GG. A graph GG is said to be double domination edge critical if γ×2(G+e)<γ×2(G)\gamma_{\times 2}(G+e)<\gamma_{\times 2}(G) for any edge e∉Ee \notin E. A double domination edge critical graph GG with γ×2(G)=k\gamma_{\times 2}(G)=k is called kk-γ×2(G)\gamma_{\times 2}(G)-critical. A graph GG is rr-factor-critical if G−SG-S has a perfect matching for each set SS of rr vertices in GG. In this paper we show that GG is 3-factor-critical if GG is a 3-connected claw-free 44-γ×2(G)\gamma_{\times 2}(G)-critical graph of odd order with minimum degree at least 4 except a family of graphs.Comment: 14 page

    Coupling and Bernoullicity in random-cluster and Potts models

    Full text link
    An explicit coupling construction of random-cluster measures is presented. As one of the applications of the construction, the Potts model on amenable Cayley graphs is shown to exhibit at every temperature the mixing property known as Bernoullicity

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let k∈Nk \in \mathbb{N} and let GG be a graph. A function f:V(G)→2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=∅f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of ∑x∈V(G)∣f(x)∣\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    Random interlacements and amenability

    Full text link
    We consider the model of random interlacements on transient graphs, which was first introduced by Sznitman [Ann. of Math. (2) (2010) 171 2039-2087] for the special case of Zd{\mathbb{Z}}^d (with d≥3d\geq3). In Sznitman [Ann. of Math. (2) (2010) 171 2039-2087], it was shown that on Zd{\mathbb{Z}}^d: for any intensity u>0u>0, the interlacement set is almost surely connected. The main result of this paper says that for transient, transitive graphs, the above property holds if and only if the graph is amenable. In particular, we show that in nonamenable transitive graphs, for small values of the intensity u the interlacement set has infinitely many infinite clusters. We also provide examples of nonamenable transitive graphs, for which the interlacement set becomes connected for large values of u. Finally, we establish the monotonicity of the transition between the "disconnected" and the "connected" phases, providing the uniqueness of the critical value ucu_c where this transition occurs.Comment: Published in at http://dx.doi.org/10.1214/12-AAP860 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore