1,478 research outputs found

    Multi-standard programmable baseband modulator for next generation wireless communication

    Full text link
    Considerable research has taken place in recent times in the area of parameterization of software defined radio (SDR) architecture. Parameterization decreases the size of the software to be downloaded and also limits the hardware reconfiguration time. The present paper is based on the design and development of a programmable baseband modulator that perform the QPSK modulation schemes and as well as its other three commonly used variants to satisfy the requirement of several established 2G and 3G wireless communication standards. The proposed design has been shown to be capable of operating at a maximum data rate of 77 Mbps on Xilinx Virtex 2-Pro University field programmable gate array (FPGA) board. The pulse shaping root raised cosine (RRC) filter has been implemented using distributed arithmetic (DA) technique in the present work in order to reduce the computational complexity, and to achieve appropriate power reduction and enhanced throughput. The designed multiplier-less programmable 32-tap FIR-based RRC filter has been found to withstand a peak inter-symbol interference (ISI) distortion of -41 dB

    IIR approximation of FIR filters via discrete-time vector fitting

    Get PDF
    We present a novel technique for approximating finite-impulse-response (FIR) filters with infinite-impulse-response (IIR) structures through extending the vector fitting (VF) algorithm, used extensively for continuous-time frequency-domain rational approximation, to its discrete-time counterpart called VFz. VFz directly computes the candidate filter poles and iteratively relocates them for progressively better approximation. Each VFz iteration consists of the solutions of an overdetermined linear equation and an eigenvalue problem, with real-domain arithmetic to accommodate complex poles. Pole flipping and maximum pole radius constraint guarantee stability and robustness against finite-precision implementation. Comparison against existing algorithms confirms that VFz generally exhibits fast convergence and produces highly accurate IIR approximants. © 2008 IEEE.published_or_final_versio

    Highly Efficient Spectral Calibration Methods for Swept-Source Optical Coherence Tomography

    Get PDF
    Recent techniques in optical coherence tomography (OCT) make use of specialized light sources that sweep across a broad optical bandwidth, allowing for longer depth ranges at higher resolutions. The produced light source signal can be described as a gaussian damped sinusoid that non-uniformly sweeps across a narrow frequency band. When sampling this interferometric signal uniformly, the generated images present considerable distortion, because the spectral information is a function of wavenumber "k", not time. To solve this problem a "calibration" step needs to be performed; in this process, the acquired interferogram signal is linearized into k-space. The process usually involves estimating the phase-frequency change profile of the SS-OCT system via Hilbert transformation, inverse tangent and phase unwrapping. In this thesis, a multitude of low complexity, computationally efficient methods for the real-time calibration of Swept Source Optical Coherence Tomography (SS-OCT) systems are implemented and results are evaluated against commonly performed calibration techniques such as Hilbert transformation. Simulation shows execution times decisively improved by up to a factor of ten, depending on the used technique. Axial resolution was also slightly improved across all the tested techniques. Moreover, the inverse tangent and phase unwrapping steps necessary for Hilbert transform calibration techniques are eliminated, vastly reducing circuit implementation complexity and making the system suitable for future inexpensive, power efficient, on-chip solutions in SS-OCT post-processing

    Adaptive Baseband Pro cessing and Configurable Hardware for Wireless Communication

    Get PDF
    The world of information is literally at one’s fingertips, allowing access to previously unimaginable amounts of data, thanks to advances in wireless communication. The growing demand for high speed data has necessitated theuse of wider bandwidths, and wireless technologies such as Multiple-InputMultiple-Output (MIMO) have been adopted to increase spectral efficiency.These advanced communication technologies require sophisticated signal processing, often leading to higher power consumption and reduced battery life.Therefore, increasing energy efficiency of baseband hardware for MIMO signal processing has become extremely vital. High Quality of Service (QoS)requirements invariably lead to a larger number of computations and a higherpower dissipation. However, recognizing the dynamic nature of the wirelesscommunication medium in which only some channel scenarios require complexsignal processing, and that not all situations call for high data rates, allowsthe use of an adaptive channel aware signal processing strategy to provide adesired QoS. Information such as interference conditions, coherence bandwidthand Signal to Noise Ratio (SNR) can be used to reduce algorithmic computations in favorable channels. Hardware circuits which run these algorithmsneed flexibility and easy reconfigurability to switch between multiple designsfor different parameters. These parameters can be used to tune the operations of different components in a receiver based on feedback from the digitalbaseband. This dissertation focuses on the optimization of digital basebandcircuitry of receivers which use feedback to trade power and performance. Aco-optimization approach, where designs are optimized starting from the algorithmic stage through the hardware architectural stage to the final circuitimplementation is adopted to realize energy efficient digital baseband hardwarefor mobile 4G devices. These concepts are also extended to the next generation5G systems where the energy efficiency of the base station is improved.This work includes six papers that examine digital circuits in MIMO wireless receivers. Several key blocks in these receiver include analog circuits thathave residual non-linearities, leading to signal intermodulation and distortion.Paper-I introduces a digital technique to detect such non-linearities and calibrate analog circuits to improve signal quality. The concept of a digital nonlinearity tuning system developed in Paper-I is implemented and demonstratedin hardware. The performance of this implementation is tested with an analogchannel select filter, and results are presented in Paper-II. MIMO systems suchas the ones used in 4G, may employ QR Decomposition (QRD) processors tosimplify the implementation of tree search based signal detectors. However,the small form factor of the mobile device increases spatial correlation, whichis detrimental to signal multiplexing. Consequently, a QRD processor capableof handling high spatial correlation is presented in Paper-III. The algorithm and hardware implementation are optimized for carrier aggregation, which increases requirements on signal processing throughput, leading to higher powerdissipation. Paper-IV presents a method to perform channel-aware processingwith a simple interpolation strategy to adaptively reduce QRD computationcount. Channel properties such as coherence bandwidth and SNR are used toreduce multiplications by 40% to 80%. These concepts are extended to usetime domain correlation properties, and a full QRD processor for 4G systemsfabricated in 28 nm FD-SOI technology is presented in Paper-V. The designis implemented with a configurable architecture and measurements show thatcircuit tuning results in a highly energy efficient processor, requiring 0.2 nJ to1.3 nJ for each QRD. Finally, these adaptive channel-aware signal processingconcepts are examined in the scope of the next generation of communicationsystems. Massive MIMO systems increase spectral efficiency by using a largenumber of antennas at the base station. Consequently, the signal processingat the base station has a high computational count. Paper-VI presents a configurable detection scheme which reduces this complexity by using techniquessuch as selective user detection and interpolation based signal processing. Hardware is optimized for resource sharing, resulting in a highly reconfigurable andenergy efficient uplink signal detector

    Multispectral Video Fusion for Non-contact Monitoring of Respiratory Rate and Apnea

    Full text link
    Continuous monitoring of respiratory activity is desirable in many clinical applications to detect respiratory events. Non-contact monitoring of respiration can be achieved with near- and far-infrared spectrum cameras. However, current technologies are not sufficiently robust to be used in clinical applications. For example, they fail to estimate an accurate respiratory rate (RR) during apnea. We present a novel algorithm based on multispectral data fusion that aims at estimating RR also during apnea. The algorithm independently addresses the RR estimation and apnea detection tasks. Respiratory information is extracted from multiple sources and fed into an RR estimator and an apnea detector whose results are fused into a final respiratory activity estimation. We evaluated the system retrospectively using data from 30 healthy adults who performed diverse controlled breathing tasks while lying supine in a dark room and reproduced central and obstructive apneic events. Combining multiple respiratory information from multispectral cameras improved the root mean square error (RMSE) accuracy of the RR estimation from up to 4.64 monospectral data down to 1.60 breaths/min. The median F1 scores for classifying obstructive (0.75 to 0.86) and central apnea (0.75 to 0.93) also improved. Furthermore, the independent consideration of apnea detection led to a more robust system (RMSE of 4.44 vs. 7.96 breaths/min). Our findings may represent a step towards the use of cameras for vital sign monitoring in medical applications

    Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

    Get PDF
    Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems

    Simulation of Few Mode Fiber Communication System Using Adaptive Recursive least Square Algorithm

    Get PDF
    The constant demand of faster mode of communication has revolutionized the technology related to optical fiber communication system. The large member of global researchers are using space division multiplexing (SDM).The research is motivated by the urgent industrial requirement. This technology has sample of scope of improving the channel space. The few mode fiber (FMF) communication system improvement using adaptive algorithm has few issues which are posing the challenges like intermodal noise due to compiling in a random manner .It has some delay which needs to be taken care of is called as differential mode group delay (DMGD).In this work, Recursive Least Square (RLS) has been promised. This yield the convergence faster but at the cost of complex hardware. The FD-LMS algorithm has been considered as a reference. A step size controlled has been put to work. In the reference work the FD-LMS appears to better than LMS algorithm

    Beiträge zu breitbandigen Freisprechsystemen und ihrer Evaluation

    Get PDF
    This work deals with the advancement of wideband hands-free systems (HFS’s) for mono- and stereophonic cases of application. Furthermore, innovative contributions to the corr. field of quality evaluation are made. The proposed HFS approaches are based on frequency-domain adaptive filtering for system identification, making use of Kalman theory and state-space modeling. Functional enhancement modules are developed in this work, which improve one or more of key quality aspects, aiming at not to harm others. In so doing, these modules can be combined in a flexible way, dependent on the needs at hand. The enhanced monophonic HFS is evaluated according to automotive ITU-T recommendations, to prove its customized efficacy. Furthermore, a novel methodology and techn. framework are introduced in this work to improve the prototyping and evaluation process of automotive HF and in-car-communication (ICC) systems. The monophonic HFS in several configurations hereby acts as device under test (DUT) and is thoroughly investigated, which will show the DUT’s satisfying performance, as well as the advantages of the proposed development process. As current methods for the evaluation of HFS’s in dynamic conditions oftentimes still lack flexibility, reproducibility, and accuracy, this work introduces “Car in a Box” (CiaB) as a novel, improved system for this demanding task. It is able to enhance the development process by performing high-resolution system identification of dynamic electro-acoustical systems. The extracted dyn. impulse response trajectories are then applicable to arbitrary input signals in a synthesis operation. A realistic dynamic automotive auralization of a car cabin interior is available for HFS evaluation. It is shown that this system improves evaluation flexibility at guaranteed reproducibility. In addition, the accuracy of evaluation methods can be increased by having access to exact, realistic imp. resp. trajectories acting as a so-called “ground truth” reference. If CiaB is included into an automotive evaluation setup, there is no need for an acoustical car interior prototype to be present at this stage of development. Hency, CiaB may ease the HFS development process. Dynamic acoustic replicas may be provided including an arbitrary number of acoustic car cabin interiors for multiple developers simultaneously. With CiaB, speech enh. system developers therefore have an evaluation environment at hand, which can adequately replace the real environment.Diese Arbeit beschäftigt sich mit der Weiterentwicklung breitbandiger Freisprechsysteme für mono-/stereophone Anwendungsfälle und liefert innovative Beiträge zu deren Qualitätsmessung. Die vorgestellten Verfahren basieren auf im Frequenzbereich adaptierenden Algorithmen zur Systemidentifikation gemäß Kalman-Theorie in einer Zustandsraumdarstellung. Es werden funktionale Erweiterungsmodule dahingehend entwickelt, dass mindestens eine Qualitätsanforderung verbessert wird, ohne andere eklatant zu verletzen. Diese nach Anforderung flexibel kombinierbaren algorithmischen Erweiterungen werden gemäß Empfehlungen der ITU-T (Rec. P.1110/P.1130) in vorwiegend automotiven Testszenarien getestet und somit deren zielgerichtete Wirksamkeit bestätigt. Es wird eine Methodensammlung und ein technisches System zur verbesserten Prototypentwicklung/Evaluation von automotiven Freisprech- und Innenraumkommunikationssystemen vorgestellt und beispielhaft mit dem monophonen Freisprechsystem in diversen Ausbaustufen zur Anwendung gebracht. Daraus entstehende Vorteile im Entwicklungs- und Testprozess von Sprachverbesserungssystem werden dargelegt und messtechnisch verifiziert. Bestehende Messverfahren zum Verhalten von Freisprechsystemen in zeitvarianten Umgebungen zeigten bisher oft nur ein unzureichendes Maß an Flexibilität, Reproduzierbarkeit und Genauigkeit. Daher wird hier das „Car in a Box“-Verfahren (CiaB) entwickelt und vorgestellt, mit dem zeitvariante elektro-akustische Systeme technisch identifiziert werden können. So gewonnene dynamische Impulsantworten können im Labor in einer Syntheseoperation auf beliebige Eingangsignale angewandt werden, um realistische Testsignale unter dyn. Bedingungen zu erzeugen. Bei diesem Vorgehen wird ein hohes Maß an Flexibilität bei garantierter Reproduzierbarkeit erlangt. Es wird gezeigt, dass die Genauigkeit von darauf basierenden Evaluationsverfahren zudem gesteigert werden kann, da mit dem Vorliegen von exakten, realen Impulsantworten zu jedem Zeitpunkt der Messung eine sogenannte „ground truth“ als Referenz zur Verfügung steht. Bei der Einbindung von CiaB in einen Messaufbau für automotive Freisprechsysteme ist es bedeutsam, dass zu diesem Zeitpunkt das eigentliche Fahrzeug nicht mehr benötigt wird. Es wird gezeigt, dass eine dyn. Fahrzeugakustikumgebung, wie sie im Entwicklungsprozess von automotiven Sprachverbesserungsalgorithmen benötigt wird, in beliebiger Anzahl vollständig und mind. gleichwertig durch CiaB ersetzt werden kann
    • …
    corecore