34,373 research outputs found

    Toward a Robust Diversity-Based Model to Detect Changes of Context

    Get PDF
    Being able to automatically and quickly understand the user context during a session is a main issue for recommender systems. As a first step toward achieving that goal, we propose a model that observes in real time the diversity brought by each item relatively to a short sequence of consultations, corresponding to the recent user history. Our model has a complexity in constant time, and is generic since it can apply to any type of items within an online service (e.g. profiles, products, music tracks) and any application domain (e-commerce, social network, music streaming), as long as we have partial item descriptions. The observation of the diversity level over time allows us to detect implicit changes. In the long term, we plan to characterize the context, i.e. to find common features among a contiguous sub-sequence of items between two changes of context determined by our model. This will allow us to make context-aware and privacy-preserving recommendations, to explain them to users. As this is an ongoing research, the first step consists here in studying the robustness of our model while detecting changes of context. In order to do so, we use a music corpus of 100 users and more than 210,000 consultations (number of songs played in the global history). We validate the relevancy of our detections by finding connections between changes of context and events, such as ends of session. Of course, these events are a subset of the possible changes of context, since there might be several contexts within a session. We altered the quality of our corpus in several manners, so as to test the performances of our model when confronted with sparsity and different types of items. The results show that our model is robust and constitutes a promising approach.Comment: 27th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2015), Nov 2015, Vietri sul Mare, Ital

    Collaborative Deep Learning for Recommender Systems

    Full text link
    Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recent advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art
    corecore